首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is an investigation of technetium ligands and their complexes with [TcO]3+ using ab initio population analysis and molecular mechanics conformational searching methods. Calculated atomic electronic populations on the technetium atom in complexes with a number of ligands gauge the degree of covalent bonding between technetium and these ligands. Here a reduction in the positive charge on the [TcO]3+ moiety by complexation with a given ligand is correlated with covalent bonding. Our ab initio results suggest that ligands with more sulphur atoms have better covalent bonding to technetium than do other ligands. A conformational analysis of the uncomplexed ligands indicates that conformational reorganization before complexation correlates inversely with stable complex formation. This conformational analysis shows that ligands with ethylene carbonyl bridges have low energy conformations closer to the final complexation geometries than do ligands with ethylene, propylene or propylene carbonyl bridges. The presence of these low energy conformations facilitates a faster complexation of the ethylene carbonyl [TcO]3+ moiety. This result produces a kinetic explaination why ethylene carbonyl bridged ligands form stable complexes while many other ligands do not [1]. The conclusion is that kinetic and thermodynamic considerations play a role in stable complex formation between these ligands and technetium.  相似文献   

2.
3.
Binding of L-tryptophan, diazepam, salicylate and Phenol Red to defatted human serum albumin was studied by ultrafiltration at pH 7.0. All ligands bind to one high-affinity binding site with association constants of the order of 10(4)-10(5)M-1. The number of secondary binding sites was found to vary from zero to five, with association constants about 10(3)M-1. Competitive binding studies with different pairs of the ligands were performed. Binding of both ligands was determined simultaneously. L-Tryptophan and diazepam were found to compete for a common high-affinity binding site on albumin. The following combinations of ligands do not bind competitively to albumin: L-tryptophan-Phenol Red, L-tryptophan-salicylate and Phenol Red-salicylate. On the other hand, high-affinity bindings of the three ligands do not take place independently but in such a way that binding of one of the ligands results in a decrease in binding of the other ligands. The decreases in binding are reciprocal and can be accounted for by introducing a coupling constant. The magnitude of the constant is dependent on the ligands being bound. In the present study, the mutual decrease in binding was more pronounced with L-tryptophan-salicylate and Phenol Red-salicylate than with L-tryptophan-Phenol Red.  相似文献   

4.
T P Su  A D Weissman  S Y Yeh 《Life sciences》1986,38(24):2199-2210
Two endogenous ligands which interact preferentially with the sigma opioid receptors were identified from the guinea-pig brain extract in a Sephadex G-50 fractionation. These two ligands inhibited more potently the binding of [3H]SKF-10047 to sigma opioid receptors than [3H]naloxone to mu opioid receptors, [3H]ethylketocyclazocine to kappa opioid receptors and [3H]DADLE to delta opioid receptors. In the phencyclidine receptor assay, these two ligands were almost inactive. Incubation of these ligands with trypsin destroyed at least 50% of the activities in the sigma opioid receptor assay. Both ligands inhibited the sigma binding in a dose-dependent manner. The inhibition could be eliminated when the two ligands were removed from incubation media by extensive washings. It is therefore concluded that sigma opioid receptors are not phencyclidine receptors and that endogenous ligands for sigma opioid receptors may exist in the brain.  相似文献   

5.
Niemann-Pick type C1-like 1 (NPC1L1) is an intestinal cholesterol transporter that is known to be the target of the cholesterol absorption inhibitor ezetimibe. We previously discovered steroidal NPC1L1 ligands by using a novel cell-based assay that employs pharmacological chaperone effect as a readout. Those steroid derivatives bound to a site different from both the sterol-binding domain and the ezetimibe-binding site, implying that they may be a novel class of NPC1L1 inhibitors with a distinct mode of action. As an extension of that work, we aimed here to find non-steroidal NPC1L1 ligands, which may be better candidates for clinical application than steroidal ligands, by using the same assay to screen our focused library of ligands for liver X receptor (LXR), a nuclear receptor that recognizes oxysterols as endogenous ligands. Here we describe identification of a novel class of NPC1L1 ligands with a ring-fused quinolinone scaffold, and an analysis of the structure–activity relationships of their derivatives as NPC1L1 ligands.  相似文献   

6.
Small molecules that bind proteins can be used as ligands for protein purification and for investigating protein-protein and protein-drug interactions. Unfortunately, many methods used to identify new ligands to desired proteins suffer from common shortcomings, including the requirement that the target protein be purified and/or the requirement that the ligands be selected under conditions different from those under which it will be used. We have developed a new method called the Bead blot that can (i) select ligands to unpurified proteins, including trace proteins, present in complex materials (e.g., unfractionated plasma); (ii) select ligands to multiple proteins under a variety of conditions in a single experiment; and (iii) be used with libraries of different types of ligands. In the Bead blot, a library of ligands, synthesized on chromatography resin beads, is incubated with a starting material containing a target protein for which a ligand is sought. The proteins in the material bind to their complementary ligands according to specific affinity interactions. Then the protein-loaded beads are immobilized in a porous matrix, and the proteins are directionally eluted from the beads and captured on a membrane superimposed on the beads. The location of the target protein on the membrane is determined, and because the position of the protein(s) on the membrane reflects the position of the bead(s) in the matrix, the bead that originally bound the protein is identified, with subsequent elucidation of the ligand sequence. Ligands to several targets can be identified in one experiment. Here we demonstrate the broad utility of this method by the selection of ligands that purify plasma protein complexes or that remove pathogens from whole blood with very high affinity constants. We also select ligands to a protein based on competitive elution.  相似文献   

7.
The exchange reactions of S-protected dithiol monoaminemonoamide (MAMA) ligands with Tc(V)-gluconate were investigated. Protection of the mercaptide sulfur atoms with acid, base and metal labile groups permitted complex formation of the MAMA ligands at a range of pHs. In general, the rate of complex formation was faster with the MAMA ligands than with the corresponding diamide dithiol (DADS) ligands. The rate of Tc complex formation depended on the nature of the sulfur protecting groups and on the position of the amine group with respect to the other donor groups in the ligands. Two isomeric ligands showed different mechanisms of complex formation. The isomer which gave the final Tc-dithiolate-MAMA complex in higher yield was shown to form a Tc-thioether-thiol-MAMA complex as an intermediate prior to metal-assisted S-dealkylation. The formation of the Tc-thioether complex intermediate at a lower temperature may account for the enhanced kinetics of chelation compared to the isomer which did not form the intermediate complex.  相似文献   

8.
RAGE and RAGE ligands in cancer   总被引:3,自引:0,他引:3  
The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor with multiple ligands that is known to play a key role in several diseases, including diabetes, arthritis, and Alzheimer's disease. Recent evidence indicates that this receptor also has an important role in cancer. RAGE ligands, which include the S100/calgranulins and high-mobility group box 1 (HMGB1) ligands, are expressed and secreted by cancer cells and are associated with increased metastasis and poorer outcomes in a wide variety of tumors. These ligands can interact in an autocrine manner to directly activate cancer cells and stimulate proliferation, invasion, chemoresistance, and metastasis. RAGE ligands derived from cancer cells can also influence a variety of important cell types within the tumor microenvironment, including fibroblasts, leukocytes, and vascular cells, leading to increased fibrosis, inflammation, and angiogenesis. Several of the cells in the tumor microenvironment also produce RAGE ligands. Most of the cancer-promoting effects of RAGE ligands are the result of their interaction with RAGE. However, these ligands also often have separate intracellular roles, and some may interact with other extracellular targets, so it is not currently possible to assign all of their effects to RAGE activation. Despite these complications, the bulk of the evidence supports the premise that the ligand-RAGE axis is an important target for therapeutic intervention in cancer.  相似文献   

9.
Long-range interaction between all the ligands bound to DNA molecule may give rise to adsorption with the character of phase transition of the first kind (D. Y. Lando, V. B. Teif, J. Biomol. Struct & Dynam. 18, 903-911 (2000)). In this case, the binding curve, c(c(o)), is characterized by a sudden change of the relative concentration of bound ligands ((c)) at a critical concentration of free (unbound) ligands, c(o)=c(ocr), from a low c value to a high one where c(o) is molar concentration of free ligands. Such a transition might be caused by some types of DNA condensation or changes in DNA topology. For the study of the conditions necessary for adsorption with the character of phase transition, a calculation procedure based on the method of the free energy minimum is developed. The ligand size and two types of interactions between ligands adsorbed on DNA molecule are taken into consideration: long-range interaction between all the ligands bound to DNA and contact interactions between neighboring ligands. It was found that a) Stronger long-range interaction is required for longer ligands to induce phase transition that is occurred at greater c(ocr) values; b) Pure contact interaction between neighboring ligands can not itself initiate phase transition. However contact cooperativity strongly decreases the threshold value of energy of long-range interaction necessary to give rise to the transition.  相似文献   

10.
In this paper, a series of adsorbents with different amino acid ligands for endotoxin removal were prepared and endotoxin adsorption capacities (EAC) in aqueous solution were studied using an affinity column. The results showed that the property and structure of amino acid ligands have great influence on EAC. As the increasing of isoelectric point and polarity of amino acids ligands, EACs of the adsorbents increased. In addition, computer simulation method was employed to a further investigation on the interaction between endotoxins and ligands. Based on the results, some adsorbents were applied to remove endotoxin from endotoxemia rabbit's serum. Similar adsorption results were observed and the removal efficiency of adsorbents with Arg, Ser ligands is up to 78%.  相似文献   

11.
A theoretical model is developed for cell-to-cell binding by bivalent ligands that can bind to mobile receptors on the cell surfaces. Monovalent inhibitors that can bind either to receptors or ligands are also included. For symmetrical ligands, that is, ligands in which both binding sites are the same, it is shown that crosslinking of receptors on each cell will interfere with intercellular bridge formation. At equilibrium, such interference is not drastic, but if the crosslinks can form before the cells are brought into contact, crosslinking may greatly impede the rate of intercellular binding. Comparison is made with experiments, and the importance of receptor mobility is discussed. It is noted that ligands can also bind a cell to itself or to a surface.  相似文献   

12.
[(3)H]labeled progesterone and a number of its 16alpha, 17alpha-cycloalkano derivatives with an additional three to six-membered D' ring were investigated for mutual competition and equilibrium binding to proteins from rat uterine cytosol. The interaction of all studied [(3)H]ligands with proteins was characterized by comparable affinity (K(d) in nM region) and apparent homogeneity in terms of affinity. At the same time, the concentrations of binding sites for ligands bearing 16alpha,17alpha cyclopentano, cyclohexano, or cyclohexeno substituents were several-fold higher than those for progesterone or 16alpha, 17alpha-cyclopropanoprogesterone. In mutual competition experiments, when [(3)H]progesterone or [(3)H]16alpha, 17alpha-cyclopropanoprogesterone were used, the curves of 'bound radioactivity-log of competitor concentration' for all compounds studied were parallel and corresponded to a model of 'one protein-two ligands.' However, when [(3)H]ligands with bulky 16alpha, 17alpha-substituents (with the possible exception of cyclohexene derivative) were used, competitive curves for various ligands had different appearances and fell into two groups. Parallel curves for derivatives with 5 or 6 carbons in D' ring described by a model of 'one protein-two ligands' formed the 1st group. The 2nd group comprised curves for progesterone or 16alpha, 17alpha-cyclopropanoprogesterone that had lower slopes and could be described by a model of 'two proteins-two ligands.' Taken together, the results suggest the presence in rat uterine cytosol, of a protein in addition to progesterone receptor capable of discriminating between ligands with no or small 16alpha, 17alpha-cycloalkano substituents and ligands with more bulky substituents.  相似文献   

13.
RNA ligands that bind to the human immunodeficiency virus type-1 (HIV-1) gag polyprotein with 10(-9) M affinity were isolated from a complex pool of RNAs using an in vitro selection method. The ligands bind to two different regions within gag, either to the matrix protein or to the nucleocapsid protein. Binding of a matrix ligand to gag did not interfere with the binding of a nucleocapsid ligand, and binding of a nucleocapsid ligand to gag did not interfere with the binding of a matrix ligand. However, binding of a nucleocapsid ligand to gag did interfere with binding of an RNA containing the HIV-1 RNA packaging element (psi), even though the sequence of the nucleocapsid ligand is not similar topsi. The minimal sequences required for the ligands to bind to matrix or nucleocapsid were determined. Minimal nucleocapsid ligands are predicted to form a stem-loop structure that has a self-complementary sequence at one end. Minimal matrix ligands are predicted to form a different stem-loop structure that has a CAARU loop sequence. The properties of these RNA ligands may provide tools for studying RNA interactions with matrix and nucleocapsid, and a novel method for inhibiting HIV replication.  相似文献   

14.
Galectins are a family of metazoan proteins that show binding to various β-galactoside-containing glycans. Because of a lack of proper tools, the interaction of galectins with their specific glycan ligands in the cells and tissues are largely unknown. We have investigated the localization of galectin ligands in Caenorhabditis elegans using a novel technology that relies on the high binding specificity between galectins and their endogenous ligands. Fluorescently labeled recombinant galectin fusions are found to bind to ligands located in diverse tissues including the intestine, pharynx, and the rectal valve. Consistent with their role as galactoside-binding proteins, the interaction with their ligands is inhibited by galactose or lactose. Two of the galectins, LEC-6 and LEC-10, recognize ligands that co-localize along the intestinal lumen. The ligands for LEC-6 and LEC-10 are absent in three glycosylation mutants bre-1, fut-8, and galt-1, which have been shown to be required to synthesize the Gal-β1,4-Fuc modifications of the core N-glycans unique to C. elegans and several other invertebrates. Both galectins pull down the same set of glycoproteins in a manner dependent on the presence of these carbohydrate modifications. Endogenous LEC-6 and LEC-10 are expressed in the intestinal cells, but they are localized to different subcellular compartments that do not appear to overlap with each other or with the location of their glycan targets. An altered subcellular distribution of these ligands is found in mutants lacking both galectins. These results suggest a model where LEC-6 and LEC-10 interact with glycoproteins through specific glycans to regulate their cellular fate.  相似文献   

15.
G I Bell 《Cell biophysics》1979,1(2):133-147
A theoretical model is developed for cell-to-cell binding by bivalent ligands that can bind to mobile receptors on the cell surfaces. Monovalent inhibitors that can bind either to receptors or ligands are also included. For symmetrical ligands, that is, ligands in which both binding sites are the same, it is shown that crosslinking of receptors on each cell will interfere with intercellular bridge formation. At equilibrium, such interference is not drastic, but if the crosslinks can form before the cells are brought into contact, crosslinking may greatly impede the rate of intercellular binding. Comparison is made with experiments, and the importance of receptor mobility is discussed. It is noted that ligands can also bind a cell to itself or to a surface.  相似文献   

16.
Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.  相似文献   

17.
PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.  相似文献   

18.
Fu L  Li B  Zhang Y 《Analytical biochemistry》2012,421(1):198-202
G-quadruplex ligands can interfere with the telomere structure, telomere elongation/replication, and proliferation of cancer cells. A key element in the development of potent G-quadruplex ligands is the screening of large chemical libraries of potential candidates. Here, we describe a simple fluorescence method for screening of G-quadruplex ligands. The method is based on the ability of G-quadruplex ligands to displace hemin from G-quadruplex-based DNAzyme, resulting in a decrease of its catalytic activity on the fluorescence-developing reaction between p-hydroxyphenylacetic acid and H(2)O(2). The method eliminates the requirement for expensive and time-consuming preparation of labeled DNA. Our method provides a simple, cheap, and sensitive approach to screen G-quadruplex ligands (potential antitumor drugs).  相似文献   

19.
BACKGROUND: Fluorescently labeled ligands and flow cytometric methods allow quantification of receptor-ligand binding. Such methods require calibration of the fluorescence of bound ligands. Moreover, binding of unlabeled ligands can be calculated based on their abilities to compete with a labeled ligand. In this study, calibration parameters were determined for six fluorescently labeled N-formyl peptides that bind to receptors on neutrophils. Two of these ligands were then used to develop and validate competitive binding protocols for determining binding constants of unlabeled ligands. METHODS: Spectrofluorometric and flow cytometric methods for converting relative flow cytometric intensities to number of bound ligand/cell were extended to include peptides labeled with fluorescein, Bodipy, and tetramethylrhodamine. The validity of flow cytometric competitive binding protocols was tested using two ligands with different fluorescent properties that allowed determination of rate constants both directly and competitively for one ligand, CHO-NLFNYK-tetramethylrhodamine. RESULTS: Calibration parameters were determined for six fluorescently-labeled N-formyl peptides. Equilibrium dissociation constants for these ligands varied over two orders of magnitude and depended upon the peptide sequence and the molecular structure of the fluorescent tag. Kinetic rate constants for CHO-NLFNYK-tetramethylrhodamine determined directly or in competition with CHO-NLFNYK-fluorescein were statistically identical. CONCLUSIONS: Combination of spectrofluorometric and flow cytometric methods allows convenient calculation of calibration parameters for a series of fluorescent ligands that bind to the same receptor site. Competitive binding protocols have been independently validated.  相似文献   

20.
Detection of antibodies in serum has many important applications. Our goal was to develop a facile general experimental approach for identifying antibody-specific peptide ligands that could be used as the reagents for antibody detection. Our emphasis was on an approach that would allow identification of peptide ligands for antibodies in serum without the need to isolate the target antibody or to know the identity of its antigen. We combined ribosome display (RD) with the analysis of peptide libraries by next generation sequencing (NGS) of their coding RNA to facilitate identification of antibody-specific peptide ligands from random sequence peptide library. We first demonstrated, using purified antibodies, that with our approach-specific peptide ligands for antibodies with simple linear epitopes, as well as peptide mimotopes for antibodies recognizing complex epitopes, were readily identified. Inclusion of NGS analysis reduced the number of RD selection rounds that were required to identify specific ligands and facilitated discrimination between specific and spurious nonspecific sequences. We then used a model of human serum spiked with a known target antibody to develop NGS-based analysis that allowed identification of specific ligands for a target antibody in the context of an overwhelming amount of unrelated immunoglobins present in serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号