首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The BamHI K region of Epstein-Barr virus DNA is transcribed in latently infected cells from Burkitt tumors and in growth-transformed B-lymphocytes latently infected with Epstein-Barr virus. We determined the nucleotide sequence of a 1,153-base pair HinfI fragment in BamHI fragment K from the B95-8 Epstein-Barr virus isolate. The fragment contains a remarkable 708-base pair simple sequence repeat array, designated IR3, which is composed of only three nucleotide triplet elements: GGG, GCA, and GGA. The triplets are organized into three repeat units: GCAGGA, GCAGGAGGA, and GGGGCAGGA. Immediately 3' of IR3 are tandem nearly perfect direct repeats of two different 24-base pair sequences. IR3 is conserved at a colinear position in the DNAs of other Epstein-Barr virus isolates, and a homologous sequence maps at the same location in the genome of a genetically related baboon herpesvirus, herpesvirus papio. IR3 is transcribed from left to right in latently infected, growth-transformed IB4 cells. It encodes part of a 2.0-kilobase exon of the 3.7-kilobase cytoplasmic polyadenylated RNA previously detected in IB4 cells (van Santen et al., Proc. Natl. Acad. Sci. U.S.A. 78:1930-1934, 1981). IR3 also encodes parts of 2.4- and 1.0-kilobase RNAs in productively infected B95-8 cells.  相似文献   

2.
The Epstein-Barr virus (EBV) BZLF1 gene product is thought to mediate the disruption of latent EBV infection. We have examined the regulatory effects of BZLF1 by studying its transactivating effects on seven different EBV promoters. We find that whereas the BZLF1 gene product increases the activity of the two early promoters, BMLF1 and BMRF1, it decreases the activity of three latent promoters (the BamHI-C and BamHI-W Epstein-Barr nuclear antigen promoters and the latent membrane protein promoter). The BZLF1-induced changes in promoter-directed chloramphenicol acetyltransferase activity occur in EBV-negative as well as EBV-positive cell lines and are accompanied by a similar change in chloramphenicol acetyltransferase mRNA. Deletion analysis of the BamHI Z fragment indicates that in a portion of the amino-terminal half of the BZLF1 gene product (amino acids 24 to 86) is not essential for positive transactivating effects but is required for down-regulating effects. Thus, different domains of the same EBV immediate-early gene product can either increase the function of EBV promoters active in productive infection or decrease the function of key promoters active in latent infection.  相似文献   

3.
Preferential codon usage in genes   总被引:1,自引:0,他引:1  
We present a method which permits comparison of the preferential use of degenerate codons within any gene. The method makes use of the triplet frequencies in the noncoding frames to assess whether a preference is specific to the reading frame. Preference is given a statistical meaning by use of the analysis of variance coupled to Duncan's multiple range test.Preferential use of degenerate codons is gene-specific and independent of gene size. The data suggest that any correlation between codon frequency distribution and tRNA levels is unreliable. In those animal genes examined, codons ending in C or G are preferred; in animal viruses tested, codons ending in U or A are preferred. Similarly, the bacterial genes and the genes of single-stranded DNA phages that we analyzed differed from each other as well as from eukaryotic genes in the third base of the codon.  相似文献   

4.
M Bulmer 《Nucleic acids research》1990,18(10):2869-2873
The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes.  相似文献   

5.
Codon usage in Clonorchis sinensis was analyzed using 12,515 codons from 38 coding sequences. Total GC content was 49.83%, and GC1, GC2 and GC3 contents were 56.32%, 43.15% and 50.00%, respectively. The effective number of codons converged at 51-53 codons. When plotted against total GC content or GC3, codon usage was distributed in relation to GC3 biases. Relative synonymous codon usage for each codon revealed a single major trend, which was highly correlated with GC content at the third position when codons began with A or U at the first two positions. In codons beginning with G or C base at the first two positions, the G or C base rarely occurred at the third position. These results suggest that codon usage is shaped by a bias towards G or C at the third base, and that this is affected by the first and second bases.  相似文献   

6.
流感病毒基因的密码子偏好性及聚类分析   总被引:1,自引:0,他引:1  
徐利娟  钟金城  陈智华  穆松 《生物信息学》2010,8(2):175-179,186
流行性感冒病毒是一种造成人类及动物患流行性感冒的RNA病毒,它造成急性上呼吸道感染,并由空气迅速传播,在世界各地常有周期性的大流行。根据该病毒的基因组CDS序列,探讨了基因组序列密码子的使用模式和特性,并进行了病毒间的聚类分析。结果表明:流感病毒的G+C含量均低于A+U含量,偏向使用以A、U结尾的密码子的程度比使用以G、C结尾的较高,CUG、UCA、AGU、AGC、AGA、AGG、GUG、CCA、ACA、GGA、GCA、AUU、UGA、CAU、CAA、AAU、AAA、GAA等18个密码子为流感病毒共有的偏好性密码子,且以A结尾的居多,尤其偏爱AGA、GGA。聚类结果表明首先亚洲流感病毒H2N2和香港流感病毒H2N2聚为一类,亚洲流感病毒H1N1和俄罗斯流感病毒H1N1聚为一类,1997年和2003年~2004年发生的人禽流感聚为一类,说明它们的密码子使用的偏好性相似;而2009年爆发的甲型H1N1流感和任何一个流感的距离都比较远,说明甲型H1N1流感病毒是一种新型的病毒,不同于以往任何一种流感病毒。  相似文献   

7.
H Grosjean  W Fiers 《Gene》1982,18(3):199-209
By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.  相似文献   

8.
9.
10.
Summary This paper is concerned with the divergence of synonymous codon usage and its bias in three homologous genes within vertebrate species. Genetic distances among species are described in terms of synonymous codon usage divergence and the correlation is found between the genetic distances and taxonomic distances among species under study. A codon usage clock is reported in alphaglobin and beta-globin. A method is developed to define the synonymous codon preference bias and it is observed that the bias changes considerably among species.  相似文献   

11.
The typical number of tRNA genes in bacterial genomes is around 50, but this number varies from under 30 to over 120. We argue that tRNA gene copy numbers evolve in response to translational selection. In rapidly multiplying organisms, the time spent in translation is a limiting factor in cell division; hence, it pays to duplicate tRNA genes, thereby increasing the concentration of tRNA molecules in the cell and speeding up translation. In slowly multiplying organisms, translation time is not a limiting factor, so the overall translational cost is minimized by reducing the tRNAs to only one copy of each required gene. Translational selection also causes a preference for codons that are most rapidly translated by the current tRNAs; hence, codon usage and tRNA gene content will coevolve to a state where each is adapted to the other. We show that there is often more than one stable coevolved state. This explains why different combinations of tRNAs and codon bias can exist for different amino acids in the same organism. We analyze a set of 80 complete bacterial genomes and show that the theory predicts many of the trends that are seen in these data.  相似文献   

12.
In the present study, we examined GC nucleotide composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI) and gene length for 308 prokaryotic mechanosensitive ion channel (MSC) genes from six evolutionary groups: Euryarchaeota, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, and Gammaproteobacteria. Results showed that: (1) a wide variation of overrepresentation of nucleotides exists in the MSC genes; (2) codon usage bias varies considerably among the MSC genes; (3) both nucleotide constraint and gene length play an important role in shaping codon usage of the bacterial MSC genes; and (4) synonymous codon usage of prokaryotic MSC genes is phylogenetically conserved. Knowledge of codon usage in prokaryotic MSC genes may benefit from the study of the MSC genes in eukaryotes in which few MSC genes have been identified and functionally analysed.  相似文献   

13.
Summary Ubiquitin is ubiquitous in all eukaryotes and its amino acid sequence shows extreme conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences coding for 13 ubiquitin genes from 11 species reported so far have been compiled and analyzed. The G+C content of codon third base reveals a positive linear correlation with the genome G+C content of the corresponding species. The slope strongly suggests that the overall G+C content of codons of polyubiquitin genes clearly reflects the genome G+C content by AT/GC substitutions at the codon third position. The G+C content of ubiquitin codon third base also shows a positive linear correlation with the overall G+C content of coding regions of compiled genes, indicating the codon choices among synonymous codons reflect the average codon usage pattern of corresponding species. On the other hand, the monoubiquitin gene, which is different from the polyubiquitin gene in gene organization, gene expression, and function of the encoding protein, shows a different codon usage pattern compared with that of the polyubiquitin gene. From comparisons of the levels of synonymous substitutions among ubiquitin repeats and the homology of the amino acid sequence of the tail of monomeric ubiquitin genes, we propose that the molecular evolution of ubiquitin genes occurred as follows: Plural primitive ubiquitin sequences were dispersed on genome in ancestral eukaryotes. Some of them situated in a particular environment fused with the tail sequence to produce monomeric ubiquitin genes that were maintained across species. After divergence of species, polyubiquitin genes were formed by duplication of the other primitive ubiquitin sequences on different chromosomes. Differences in the environments in which ubiquitin genes are embedded reflect the differences in codon choice and in gene expression pattern between poly- and monomeric ubiquitin genes.  相似文献   

14.
Pathways of activation of the Epstein-Barr virus productive cycle.   总被引:25,自引:21,他引:4  
The promoter for the 2.8-kb RNA of Epstein-Barr virus encoding BZLF1 and BRLF1 was identified and shown to be activated by both BZLF1 and BRLF1 but not by 12-O-tetradecanoylphorbol-13-acetate. Site-directed mutagenesis suggests that two binding sites for BZLF1 within the promoter contribute to the transactivation by BZLF1. The early kinetics of induction of the 2.8- and 1.0-kb RNAs encoding BZLF1 and BRLF1 in Akata cells treated with anti-immunoglobulin indicate that both RNAs appear within 60 min. The results indicate some likely pathways of activation of Epstein-Barr virus productive cycle gene expression.  相似文献   

15.
Synonymous codon usage variation among Giardia lamblia genes and isolates.   总被引:3,自引:0,他引:3  
The pattern of codon usage in the amitochondriate diplomonad Giardia lamblia has been investigated. Very extensive heterogeneity was evident among a sample of 65 genes. A discrete group of genes featured unusual codon usage due to the amino acid composition of their products: these variant surface proteins (VSPs) are unusually rich in Cys and, to a lesser extent, Gly and Thr. Among the remaining 50 genes, correspondence analysis revealed a single major source of variation in synonymous codon usage. This trend was related to the extent of use of a particular subset of 21 codons which are inferred to be those which are optimal for translation; at one end of this trend were genes expected to be expressed at low levels with near random codon usage, while at the other extreme were genes expressed at high levels in which these optimal codons are used almost exclusively. These optimal codons all end in C or G so G + C content at silent sites varies enormously among genes, from values around 40%, expected to reflect the background level of the genome, up to nearly 100%. Although VSP genes are occasionally extremely highly expressed, they do not, in general, have high frequencies of optimal codons, presumably because their high expression is only intermittent. These results indicate that natural selection has been very effective in shaping codon usage in G. lamblia. These analyses focused on sequences from strains placed within G. lamblia "assemblage A"; a few sequences from other strains revealed extensive divergence at silent sites, including some divergence in the pattern of codon usage.  相似文献   

16.
Two important and not yet solved problems in bacterial genome research are the identification of horizontally transferred genes and the prediction of gene expression levels. Both problems can be addressed by multivariate analysis of codon usage data. In particular dimensionality reduction methods for visualization of multivariate data have shown to be effective tools for codon usage analysis. We here propose a multidimensional scaling approach using a novel similarity measure for codon usage tables. Our probabilistic similarity measure is based on P-values derived from the well-known chi-square test for comparison of two distributions. Experimental results on four microbial genomes indicate that the new method is well-suited for the analysis of horizontal gene transfer and translational selection. As compared with the widely-used correspondence analysis, our method did not suffer from outlier sensitivity and showed a better clustering of putative alien genes in most cases.  相似文献   

17.
Replication of latent Epstein-Barr virus genomes in Raji cells.   总被引:32,自引:22,他引:10       下载免费PDF全文
A Adams 《Journal of virology》1987,61(5):1743-1746
The replication of the 50 to 60 latent, predominantly extrachromosomal, Epstein-Barr virus genomes maintained by the Burkitt-lymphoma-derived Raji cell line was investigated by using a Meselson-Stahl density transfer approach. Samples of DNA isolated from cells cultivated for different periods in bromodeoxyuridine-supplemented medium were fractionated according to density, and the distribution of viral and cellular DNAs among the heavy-, hybrid-, and light-density species was quantitated. The results indicate that the majority of latent Epstein-Barr virus DNA plasmids each replicate once during the cell cycle.  相似文献   

18.
Gradients in nucleotide and codon usage along Escherichia coli genes   总被引:2,自引:0,他引:2  
The usage of codons and nucleotide combinations varies along genes and systematic variation causes gradients in usage. We have studied such gradients of nucleotides and nucleotide combinations and their immediate context in Escherichia coli. To distinguish mutational and selectional effects, the genes were subdivided into three groups with different codon usage bias and the gradients of nucleotide usage were studied in each group. Some combinations that can be associated with a propensity for processivity errors show strong negative gradients that become weaker in genes with low codon bias, consistent with a selection on translational efficiency. One of the strongest gradients is for third position G, which shows a pervasive positive gradient in usage in most contexts of surrounding bases.  相似文献   

19.
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage (RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to develop salt-tolerant crops of agronomic value.  相似文献   

20.

Background  

In many bacteria, intragenomic diversity in synonymous codon usage among genes has been reported. However, no quantitative attempt has been made to compare the diversity levels among different genomes. Here, we introduce a mean dissimilarity-based index (Dmean) for quantifying the level of diversity in synonymous codon usage among all genes within a genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号