首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specialized proteins known as molecular chaperones bind transiently to non-native conformational states of proteins and protein complexes to promote transition to a biologically active conformation. Recently, it was demonstrated in vitro that proteins do not uniquely possess this activity. We show that mitochondrial 12S and 16S ribosomal RNA can fold chemically denatured proteins and reactivate heat-induced aggregated proteins in vitro. This chaperone action is ATP-independent. The specific secondary structure of the mitochondrial rRNA is critical to its folding activity. Furthermore, mutant mitochondrial 16S rRNA from aged cardiac muscle cells lacked this activity. We propose that mitochondrial 12S and 16S ribosomal RNA may play an important role in protein folding in mitochondria.  相似文献   

2.
Although 5S rRNA is a highly conserved and universal component of eubacterial, archaeal, chloroplast, and eukaryotic cytoplasmic ribosomes, a mitochondrial DNA-encoded 5S rRNA has so far been identified only in land plants and certain protists. This raises the question of whether 5S rRNA is actually required for and used in mitochondrial translation. In the protist Acanthamoeba castellanii, BLAST searches fail to reveal a 5S rRNA gene in the complete mitochondrial genome sequence, nor is a 5S-sized RNA species detectable in ethidium bromide-stained gels of highly purified mitochondrial RNA preparations. Here we show that an alternative visualization technique, UV shadowing, readily detects a novel, mitochondrion-specific small RNA in A. castellanii mitochondrial RNA preparations, and that this RNA species is, in fact, a 5S rRNA encoded by the A. castellanii mitochondrial genome. These results emphasize the need for caution when interpreting negative results that suggest the absence of 5S rRNA and/or a mitochondrial DNA-encoded 5S rRNA sequence in other (particularly protist) mitochondrial systems.  相似文献   

3.
A cDNA preparation, synthesized by using Saccharomyces cerevisiae mitochondrial RNA as template and oligodeoxythymidylic acid as primer, was found to specifically hybridize to the mitochondrial 21S rRNA by the following criteria: (i) it hybridizes only to the 21S RNA species in mitochondrial RNA and not to RNA from a [rho0] mutant, and (ii) it hybridizes to fragments in restriction digests of mitochondrial DNA that contain the 21S rRNA gene but not to nuclear DNA. This cDNA was used as a probe to demonstrate that a 2.6-fold decrease in the cellular level of the mitochondrial large rRNA is associated with glucose repression of mitochondrial function in S. cerevisiae. A corresponding decrease in the level of mitochondrial DNA was not observed.  相似文献   

4.
In this study, we analyzed a mitochondrial small (ms) RNA in Dictyostelium discoideum, which is 129 nucleotides long and has a GC content of only 22.5%. In the mitochondrial DNA, a single-copy gene (msr) for the ms RNA was located downstream of the gene for large-subunit rRNA. The location of msr was similar to that of the 5S rRNA gene in prokaryotes and chloroplasts, but clearly different from that in mitochondria of plants, liverwort and the chlorophycean alga Prototheca wikerhamii, in which small-subunit rRNA and 5S rRNA genes are closely linked. The primary sequence of ms RNA showed low homology with mitochondrial 5S rRNA from plants, liverwort and the chlorophycean alga, but the proposed secondary structure of ms RNA was similar to that of cytoplasmic 5S rRNA. In addition, ms RNA showed a highly conserved GAAC sequence in the same loop as in common 5S rRNA. However, ms RNA was detected mainly in the mitochondrial 25?000?×?g supernatant fraction which was devoid of ribosomes. It is possible that ms RNA is an evolutionary derivative of mitochondrial 5S rRNA.  相似文献   

5.
6.
7.
In this study, we analyzed a mitochondrial small (ms) RNA in Dictyostelium discoideum, which is 129 nucleotides long and has a GC content of only 22.5%. In the mitochondrial DNA, a single-copy gene (msr) for the ms RNA was located downstream of the gene for large-subunit rRNA. The location of msr was similar to that of the 5S rRNA gene in prokaryotes and chloroplasts, but clearly different from that in mitochondria of plants, liverwort and the chlorophycean alga Prototheca wikerhamii, in which small-subunit rRNA and 5S rRNA genes are closely linked. The primary sequence of ms RNA showed low homology with mitochondrial 5S rRNA from plants, liverwort and the chlorophycean alga, but the proposed secondary structure of ms RNA was similar to that of cytoplasmic 5S rRNA. In addition, ms RNA showed a highly conserved GAAC sequence in the same loop as in common 5S rRNA. However, ms RNA was detected mainly in the mitochondrial 25 000 × g supernatant fraction which was devoid of ribosomes. It is possible that ms RNA is an evolutionary derivative of mitochondrial 5S rRNA. Received: 17 May 1997 / Accepted: 26 August 1997  相似文献   

8.
9.
10.
11.
I Palmero  J Renart  L Sastre 《Gene》1988,68(2):239-248
cDNA clones coding for Artemia mitochondrial 16S ribosomal RNA (rRNA) have been isolated. The clones cover from nucleotide 650 of the RNA molecule to its 3' end. The comparison of Artemia sequence with both vertebrate and invertebrate mitochondrial 16S rRNA sequences has shown the existence of regions of high similarity between them. A model for the secondary structure of the 3' half of Artemia mitochondrial 16S rRNA is proposed. The size of the rRNA molecule has been estimated at 1.35 kb. Despite the similarity of the Artemia gene to insect rRNA in size, sequence and secondary structure, the G + C content of the Artemia gene (42%) is closer to that of mammals than to the insect genes. The number of mitochondria in Artemia has been estimated at 1500 per diploid genome in the cyst and 4000 in the nauplius. In contrast, the amount of mt 16S rRNA is constant at all stages of Artemia development.  相似文献   

12.
L cells incubated at 19 °C synthesize mitochondrial rRNA but not cytosol rRNA. In addition to 16 and 13S mitochondrial rRNA, mitochondrial RNA sedimenting at higher S values was also synthesized. The processing of mitochondrial rRNA is slower at 19 °C than at 37 °C.  相似文献   

13.
14.
7 S RNA accumulates at non-permissive temperatures in an RNAase E strain containing the recombinant plasmid pJR3Δ which carries a single 5 S rRNA gene and expression sequences. 7 S RNA is a processing intermediate that contains the complete sequence of 5 S rRNA as well as a stem-and-loop structure encoded by the terminator of rrnD. 7 S RNA can be processed in vitro by RNAase E. Structural analysis of the products (5 S rRNA and the stem) of in vitro processing of 7 S RNA revealed that the cleavage site of RNAase E in 7 S RNA is 3 nucleotides downstream from the 3′ end of the mature 5 S rRNA. The cleavage generates 3′-hydroxyl and 5′-phosphate termini.  相似文献   

15.
During electrophoresis in polyacrylamide gels containing 7M urea the major discrete components of preparations of rat liver mitochondrial poly(A)+ and poly(A)- RNA species have similar mobilities. Poly(A)- RNA components hybridize to the 16S rRNA gene of mtDNA. Analysis of 5'-terminal sequences of these components revealed their identity to the 5'-terminal sequence of 16S rRNA. These results show that poly(A)- RNA components are fragmentation products of 16S rRNA. Fragmentation occurs nonrandomly from the 3'-end of the original rRNA molecules and lead to formation of products with electrophoretic mobilities similar to those of poly(A)+ RNA components.  相似文献   

16.
In some strains of Saccharomyces cerevisiae the mitochondrial gene coding for 21S rRNA is interrupted by an intron of 1143 bp. This intron contains a reading frame for 235 amino acids: Unassigned Reading Frame (URF). In order to check whether expression of this URF is required for proper splicing of precursors to 21S rRNA, the precision of RNA splicing was analysed in a petite mutant, where no mitochondrial protein synthesis is possible anymore. We have devised a new assay to monitor the precision of the splicing event. The method is of general application, provided that the sequence of the splice boundaries is known. In the case of the 21S rRNA it involves the synthesis of the DNA oligonucleotide d(CGATCCCTATTGTC( complementary to the 5' d(CGATCCCTAT) and 3' d(TGTC) borders flanking the intron in the 21S rRNA gene. The oligonucleotide is labelled with 32p at the 5'-end, hybridised to RNA and subsequently subjected to digestion with S1 nuclease. Resistance to digestion will only be observed if the correct splice-junction is made. The petite mutant we have studied contains a 21S rRNA with the same migration behaviour as wildtype 21S rRNA. In RNA blotting experiments, using an intron specific hybridisation probe, the same intermediates in splicing are found both in wild type and petite mutant. Finally the synthetic oligonucleotide hybridises to petite 21S rRNA and its thermal dissociation behaviour is indistinguishable from a hybrid formed with wildtype 21S rRNA. We conclude that expression of the URF, present in the intron of the 21S rRNA gene, is not required for processing and correct splicing of 21S ribosomal precursor RNA.  相似文献   

17.
18.
Previous studies have shown that peritoneal murine macrophages activated in vivo and in vitro to a tumoricidal stage have a depressed rate of RNA synthesis. In attempting to clarify the differences in RNA metabolism between noncytotoxic and tumoricidal macrophages, we have studied the relative accumulation of various species of RNA in macrophages activated in vivo and in vitro with the use of agarose gel electrophoresis. Macrophages activated in vitro to a cytotoxic stage with supernatants containing lymphokines (LK) and traces of lipopolysaccharide (LPS) have an imbalanced accumulation of mature ribosomal RNA (rRNA), with a decreased accumulation of 28S rRNA compared to 18S rRNA. In contrast, macrophages primed in vitro with LK free of detectable endotoxins that exhibit suppressive rather than tumoricidal activity do not manifest a decreased 28S:18S rRNA ratio. The conclusion that the decreased 28S:18S rRNA ratio was associated with the activation of macrophages to a cytolytic stage was supported by the finding that cytotoxic macrophages activated in vivo by i.p. injection of Propionibacterium acnes (formerly designated C. parvum) also demonstrated a decreased accumulation of 28S comparable with that observed in in vitro-activated macrophages. Moreover, activated macrophages that lost their cytolytic activity upon prolonged in vitro culture had an augmented accumulation of 28S rRNA. These results provide the first direct evidence that the expression of cytolytic activity is associated with modulation of a specific class of RNA. The unbalanced accumulation of rRNA appears to be a late molecular event in the activation process occurring during the transition from primed to cytotoxic macrophages, because inflammatory and primed macrophages had normal rRNA accumulation. A model of macrophage activation accounting for these results is proposed.  相似文献   

19.
Mitochondrial ribosomal RNA species from mouse L cells, rat liver, rat hepatoma, hamster BHK-21 cells and human KB cells were examined by electrophoresis on polyacrylamide-agarose gels and sedimentation in sucrose density gradients. The S(E) (electrophoretic mobility) and S values of mitochondrial rRNA of all species were highly dependent on temperature and ionic strength of the medium; the S(E) values increased and the S values decreased with an increase in temperature at a low ionic strength. At an ionic strength of 0.3 at 23-25 degrees C or an ionic strength of 0.01 at 3-4 degrees C the S and S(E) values were almost the same being about 16.2-18.0 and 12.3-13.6 for human and mouse mitochondrial rRNA. The molecular weights under these conditions were calculated to be 3.8x10(5)-4.3x10(5) and 5.9x10(5)-6.8x10(5), depending on the technique used. At 25 degrees C in buffers of low ionic strength mouse mitochondrial rRNA species had a lower electrophoretic mobility than those of human and hamster. Under these conditions the smaller mitochondrial rRNA species of hamster had a lower electrophoretic mobility than that of human but the larger component had an identical mobility. Mouse and rat mitochondrial rRNA species had identical electrophoretic mobilities. Complex differences between human and mouse mitochondrial rRNA species were observed on sedimentation in sucrose density gradients under various conditions of temperature and ionic strength. Mouse L-cell mitochondrial rRNA was eluted after cytoplasmic rRNA on a column of methylated albumin-kieselguhr.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号