首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The impact of balsam fir (Abies balsamea (L.) Miller) flowering on nutritional and allelochemical quality of pollen, current-year and one-year-old foliage is studied in relation to spruce budworm (Choristoneura fumiferana Clem.) (Lepidoptera: Tortricidae) growth, development and utilization of food and nitrogen. In the laboratory, using fresh food from the field, we simulated conditions of low larval population density, in which there is no current-year foliage depletion during the spruce budworm feeding period. Similarly, we simulated conditions of high larval population density when current-year foliage depletion occurs.Because of the high nutritive value of pollen (high amounts of amino acids and minerals, especially nitrogen; low monoterpene content), insects from flowering trees reached the fifth instar five days earlier than those from non-flowering trees, and had heavier dry- and nitrogen-weights at the beginning of the fifth instar. At budbreak, switching from pollen to current-year foliage negatively affected conversion efficiencies and digestibilities of food and nitrogen (AD; ADN; ECDN; ECI; ECIN). The switch from pollen to new foliage had a detrimental impact on fifth-instar survival and on newly-moulted sixth-instar dry- and nitrogen-weights. Moreover, during the fifth instar, balsam fir flowering reduced the nutritive value of current-year foliage, which in turn, might have contributed to the reduced larval growth. Nevertheless, during the sixth instar, balsam fir flowering affected the biochemistry of current-year foliage in ways that enabled larvae to compensate for their low fifth-instar biological performance; larvae also managed to reach pupal dry weight similar to larvae reared on non-flowering trees. Current-year foliage from flowering trees contained less nitrogen, total soluble sugars and total monoterpenes. Those foliar characteristics enabled larvae to increase food and nitrogen consumption rates (RCR; RNCR), because of lower repellency and/or post-ingestional feedback from monoterpenes.As for current-year foliage, balsam fir flowering reduced nitrogen, total soluble sugar and total monoterpene contents in one-year-old foliage during the sixth-instar feeding period. These characteristics enabled sixth-instar larvae, fed on old foliage from flowering trees, to have high relative food and nitrogen consumption rates (RCR; RNCR). Larvae were also able to reach higher relative growth rates (RGR) and relative nitrogen accumulation rates (RNAR) compared to larvae reared on one-year-old foliage from non-flowering trees. Finally, larvae on flowering trees had pupal dry weight similar to those from non-flowering trees, but reached the adult stage nine days earlier.Regardless the foliage type consumed by spruce budworm larvae during the sixth instar, pollen consumption during early larval stages reduced total development time, and thus exposure time to natural enemies. This phenomenon might increase larval survival. Balsam fir flowering changed the biochemistry of one-year-old and current-year foliages, but did not affect pupal dry weights of larvae reared on flowering trees compared to those reared on non-flowering trees. Thus, at low population density, spruce budworm populations in balsam fir flowering stands might be favoured over those in balsam fir non-flowering stands. In addition, when larvae consumed one-year-old foliage during the entire sixth instar, those on flowering trees are probably favoured over those on non-flowering trees. However, because flowering trees produce less new foliage than non-flowering trees, current-year foliage depletion may occur earlier on flowering trees than on non-flowering trees. Thus, at similar larval population density, larvae on flowering trees might have to feed on one-year-old foliage earlier than those on non-flowering trees. In that case, spruce budworm populations on non-flowering stands would be favoured over those on flowering stands.  相似文献   

2.
The Australian weevil Oxyops vitiosa was released in 1997 in Florida as a biological control agent of Melaleuca quinquenervia. The larvae of this agent are flush-feeders, found only on the growing tips of their host. Knowledge of this restriction to feeding on the growing tips and other nutritional requirements may assist in the establishment and dispersal of this species. Therefore, O. vitiosa survival was assessed when neonates were fed M. quinquenervia leaves from branches that had dormant buds or emerging bud leaves. Additionally, the influence of leaf quality from different sites and within sites was determined by the feeding of neonates emerging bud leaves collected at three sites and from three leaf qualities (poor, intermediate, and high). Within-site leaf qualities were described in the field by leaf color and in the laboratory by percentage dry mass and nitrogen. Larval survival was lowest when fed leaves from branches that had dormant buds. Associated with this low survival were high leaf toughness and percentage dry mass. When larvae were fed emerging bud leaves, most of the variation in larval survival and performance was attributed to differences in within-site plant quality. Generally, the highest-quality leaves had relatively low percentage dry mass and high percentage nitrogen. Larval survival generally decreased when fed the poor-quality leaves, and in one site, the intermediate-quality leaves. Larvae required less time to develop to adults when fed the high-quality leaves. Development time increased in females but not in males when the larvae were fed the poor-quality leaves. Adult biomass of both females and males generally increased when the larvae were fed the high-quality leaves from two of the three sites. The results indicate that the larvae of O. vitiosa are restricted to feeding on flush foliage with low toughness. Additionally, variations in foliar percentage dry mass and nitrogen influence larval survival and performance. This knowledge benefited the development of mass-production nursery sites and the selection of suitable release sites, which facilitated the establishment of this biological control agent.  相似文献   

3.
Defoliation of forest tree canopies by herbivores and other agents, leading to tree mortality and reduced productivity, threatens the ecological stability of forests globally. This study shows that long‐term control of a mammalian arboreal folivore (brushtail possums; Trichosurus vulpecula Phalangeridae) reduces crown dieback and increases foliage cover in browsing‐damaged canopy trees. We monitored indices of possum density, possum browsing, tree foliage cover and crown dieback for 20 years following initiation of possum control in 1994 that repeatedly reduced possum densities to near zero every 5–6 years and kept the population below 35% of pre‐control levels over the entire period. Observable possum browsing was recorded on 20–49% of individuals of three palatable tree species at the time of first control. Those percentages fell to zero after control and never exceeded 2–10% for individual species over the next 19 years. We recorded significant increases in foliage cover attributable to recovery from defoliation by possums for all three species during the first 10 years. Large increases in foliage cover occurred on individuals that were heavily browsed in 1994 (mean increases: 36–89%), but mean population increases were modest (3–19%) because only 10–19% of trees were initially heavily browsed. Twenty‐year mortality rates were similar for plants with, or without, initial possum browsing, indicating no residual impact of pre‐control browsing on tree mortality. Times for full recovery of crown foliage cover varied from 10 years for the youngest trees and faster growing species to more than 20 years for mature individuals of the slowest growing species.  相似文献   

4.
In 1990, natural infestations of the polyphagous vapourer moth, Orgyia antiqua (Lepidoptera: Lymantriidae) in lodgepole pine plantations in northern Scotland, were studied to ascertain the role of host foraging behaviour on the prevalence of nucleopolyhedrovirus (NPV; Baculoviridae) infection in the population. Aerial dispersal of early instar larvae (L1–L3) from the tree canopy onto heather foliage at the forest understorey, with subsequent relocation back onto the tree as late-instar larvae (L4–L6) appeared to play a significant role in the development of a widespread virus epizootic in which approximately 80% of L4–L6 individuals succumbed to disease. Bioassays of foliage 1 year later showed that the distribution of NPV followed a pronounced vertical gradient through the forest canopy culminating in high concentrations of virus in the forest understorey. Experimental systems comprising potted pine trees positioned above heather bases showed that NPV infections could be acquired by early stage larvae following dispersal from the tree and feeding on the undercanopy vegetation, then translocated to the tree component for secondary transmission to susceptible tree-feeding individuals. Behavioural studies indicated that the tendency for first-, second- and third-instar larvae to disperse to the understorey was probably not influenced by larval density on the tree but was strongly dependent on larval instar. In contrast, the tendency for larvae to relocate from the understorey heather to the tree was affected by both larval density and larval instar, suggesting that both these factors may significantly affect virus acquisition, translocation and transmission in the host population. In the present study, the heather understorey appeared to act as a pathogen reservoir in which virus could persist between host generations. Spatial heterogeneity in virus distribution combined with host foraging behaviour (dispersal and feeding) resulted in the pathogen playing a major role in host population dynamics over an extended time period (3 years). The reservoir theory is supported by the observation that similar dynamics were not observed in O. antiqua populations at neighbouring sites which lacked understorey food plants. Received: 8 June 1998 / Accepted: 5 October 1998  相似文献   

5.
Large body size confers a reproductive advantage to adults of the wood‐boring beetle Phoracantha semipunctata (F.) (Cerambycidae: Cerambycinae: Phoracanthini). Larvae of this species feed subcortically in stressed and dying eucalypt trees and logs. We evaluated the influence of the larval environment on larval performance and adult body size by manipulating the post‐felling age of host logs (from freshly cut to 2‐weeks‐old) and the density of colonizing neonates (low density with minimal competition for resources vs. high density with intense competition). Adult beetles emerged in greater numbers from logs that had been subjected to the aging treatment which reduced bark moisture content and favored colonization by neonates. Survival was greatest in larger logs having lower densities of neonates, but was greatly diminished in all treatments by mortality during pupation. Development time varied from 2 months to more than a year and was shortest in smaller logs having high densities of larvae. The size of adult beetles emerging from a log was not influenced by larval density, but was positively correlated with the age of logs when the neonates colonized, and log size. These findings suggest that the optimal developmental conditions for P. semipunctata larvae, in terms of larval performance and adult body size, are available in large, aged host logs having low densities of larvae. Manipulation of the larval environment in this study resulted in a considerable variation in adult body size, but large individuals were relatively more common in the wild population that was the source of neonates for the experiment. Potential body size may have been constrained by our use of only one host species and a narrow range of log dimensions.  相似文献   

6.
Abstract. 60 monospecific stands of Juniperus excelsa were sampled at four locations in Balouchistan. Density, basal area and height of individuals were recorded. Soils were analysed for selected physical and chemical characteristics and the degree of disturbance due to logging and burning was noted. The density of juniper trees (> 6 cm dbh) ranged from 56 to 332 stems / ha (average 174 stems / ha). Higher densities were recorded for relatively undisturbed stands and on west facing slopes. Density of seedlings and saplings (< 6 cm dbh) was strongly correlated with tree density and tree basal area. Among the edaphic variables CaC03 was correlated with juniper density and basal area. Diameter distributions within stands were mostly skewed and unimodal with gaps appearing in large size classes. The male to female ratio was close to 1. Cross-sections of 16 trees were used to determine age and growth rate. Number of rings in trees with 20 to 30 cm dbh ranged from 95 to 221 (x = 160 ± 38). Diameter and age were not related. Mean annual diameter increment ranged from 6 to 16 yr / cm x = 10 ± 3 yr / cm). It is concluded that size class gaps and low seedling / sapling densities are the consequence of anthropogenic disturbance.  相似文献   

7.
Forest structural reference conditions are widely used to understand how ecosystems have been altered and guide restoration and management objectives. We used six stem‐mapped permanent plots established in the early twentieth century to provide precise structural reference conditions for ponderosa pine forests of northern Arizona prior to Euro‐American settlement. Reference conditions for these plots in 1873–1874 included the following historical attributes: tree densities of 45–127 trees/ha, mean tree diameter at breast height (dbh) of 43.8 cm with a corresponding quadratic mean diameter range of 41.5–51.3 cm, and a stand basal area of 9.2–18.0 m2/ha. The reconstructed diameter distributions (for live ponderosa pine trees with dbh ≥9.14 cm) prior to fire exclusion varied in shape but generally displayed an irregular unimodal distribution. We suggest that management objectives for the structural restoration of ponderosa pine forests of northern Arizona emphasize: (1) conservation and retention of all pre‐settlement (>130 years) trees; (2) reduction of tree densities with a restoration objective ranging between 50 and 150 trees/ha having a large‐tree component between 25 and 50% of the total trees per hectare, respectively; (3) manipulation of the diameter distribution to achieve a unimodal or irregular, uneven‐aged shape (possibly targeting a balanced, uneven‐aged shape on cinder soil types) through the use of harvest and thinning practices that mimic gap disturbances (i.e., individual tree selection system); and (4) retention of 3–11 snags and logs per hectare resulting from natural mortality.  相似文献   

8.
Post‐logging seedling regeneration density by big‐leaf mahogany (Swietenia macrophylla), a nonpioneer light‐demanding timber species, is generally reported to be low to nonexistent. To investigate factors limiting seedling density following logging within the study region, we quantified seed production rates, germinability, dispersal patterns, and seed fates on the forest floor through germination and the first seedling growing season in southeastern Amazonia, Brazil. Fruit production rates were low by three logged and one unlogged populations compared to reports from other regions. Commercial‐sized trees (>60 cm diameter) were more fecund than noncommercial trees (30–60 cm diameter) at two sites, averaging 14.5 vs. 3.9 fruits/tree/year, respectively, at Marajoara, a logged site, over 8 yr. Fruit capsules contained an average of 60.3 seeds/fruit, 70 percent of which appeared viable by visual inspection. Sixty‐seven to 72 percent of apparently viable seeds germinated in nursery beds 2.5 mo after the dispersal period, when wet season rains began. Dry season winds blew most seeds west‐northwest of parent trees, with median dispersal distances of 28 and 9 m on west and east sides of parent trees, respectively. Nearly 100 percent of seeds fell within an area of 0.91 ha. On the forest floor beneath closed canopies, mammals, invertebrates, and fungal pathogens killed 40 percent of apparently viable seeds, while 36 percent germinated. Nine months after seedling establishment—midway through the first logging season following seed dispersal—14 percent of outplanted seeds survived as seedlings, representing 5.8 seeds/fruit. We conclude that seedlings are likely to survive in logging gaps at appreciable densities only in rare cases where previous year fruit production rates by logged trees were high (4–12.5% of commercial‐sized trees/year at Marajoara) and where tree crowns were felled in west or northwest directions.  相似文献   

9.
Studies were conducted in 1997 to evaluate the effects of the kaolin-based particle film formulation M96-018 on adults, eggs, and larvae of the obliquebanded leafroller, Choristoneura rosaceana (Harris). Particle film treatments significantly reduced female longevity, mating success, and number of egg masses oviposited compared with moths on untreated apple leaves in sleeve-cage and screen-cage tests. No differences in mating success or oviposition were caused by the application rates and coverage density of M96-018 on foliage. Females avoided ovipositing on particle film-treated leaves in choice tests. Larval hatch was not affected by topical application or residual exposure to M96-018. Larval weight gain and pupal weight were significantly reduced and larval mortality increased in no-choice feeding tests with M96-018. In choice tests, larvae preferred to feed on untreated leaf surfaces. The negative effects on larval development and survivorship on M96-018-treated foliage did not differ across a fourfold difference in spray application rate. A significant reduction in the number of infested shoots was found in orchard trials when M96-018 was applied before bud break in late March compared with untreated trees. No reductions in larval densities were found compared with an untreated control following prebloom and postbloom applications.  相似文献   

10.
11.
Abstract 1 Efficacy of commercial formulations of Bacillus thuringiensis ssp. kurstaki (Btk) against spruce budworm Choristoneura fumiferana was investigated in mixed balsam fir‐white spruce stands. Btk treatments were scheduled to coincide with early flaring of balsam fir shoots, and later with flaring of white spruce shoots. Btk efficacy on the two host trees was compared and examined according to the foliar content of nutrients and allelochemicals and the insect developmental stage at the time of spray. 2 Larvae fed white spruce foliage were less vulnerable to Btk ingestion than larvae fed balsam fir foliage. Higher larval survival on white spruce, observed 10 days after spray, was related to higher foliage content in tannins and a lower N/tannins ratio, which might have induced inactivation of Btk toxins. 3 Larval mortality due to Btk did not depend on spruce budworm larval age. 4 Foliage protection of both host trees was similar in plots treated with Btk: larval mortality due to Btk treatment reduced insect grazing pressure on balsam fir trees; meanwhile, suitability of white spruce foliage seemed to decrease very rapidly, which induced high larval mortality among spruce budworm fed on white spruce trees. Nevertheless, following Btk sprays, 50% more foliage remained on white spruce than on balsam fir trees, because of the higher white spruce foliage production. 5 Both spray timings achieved similar protection of white spruce trees, but Btk treatments had to be applied as early as possible (i.e. during the flaring of balsam fir shoots to optimally protect balsam fir trees in mixed balsam fir‐white spruce stands).  相似文献   

12.
Survival rates of both early and middle instar larvae of the nymphalid butterfly, Sasakia charonda, were estimated to be lowest on test trees planted in a meadow (site A), intermediate in a small, narrow secondary deciduous broadleaf forest (small patch, site B) and highest in a large secondary deciduous broadleaf forest (large forest, site C). The larval mortality rates due to predation by tree-climbing predators from the ground (tree climbing predator) such as ants and the larvae of carabids were estimated to be greater at sites A and B than those at site C. The number of predatory ants climbing test trees was significantly greater at sites A and B than at site C, and the ants harvested honeydew from aphids living on tree leaves at those two sites. Aphid densities were significantly higher on trees at sites A and B than at site C, and aphid densities and numbers of predatory ants were significantly and positively correlated at sites A and B. In an experiment controlling aphid density per branch on test trees, the numbers of ants and the mortality rates of S. charonda larvae were greater on branches with high aphid densities than on those with low aphid densities at both sites A and B. These results suggest that the aphid density per host tree was higher in the meadow and the small patch than in the large forest; at both sites these higher aphid densities attracted higher numbers of predatory ants to test trees, and as a result, mortality rates of S. charonda larvae were increased.  相似文献   

13.
The population dynamics of Melaleuca quinquenervia were monitored over a 5-year period in a cypress-pine wetland while subjected to two levels of herbivory. The trees had been recruited during 1998–1999 after a destructive crown fire. Half of 26 experimental plots were sprayed every 4–6 weeks with an insecticide to reduce herbivory by the biological control agents Oxyops vitiosa and Boreioglycaspis melaleucae. After only 1-year melaleuca density increased by 26% in sprayed plots and by 7% in unsprayed plots. However, over the entire 5-year period melaleuca density increased in sprayed plots by 0.1% while decreasing by 47.9% in unsprayed plots when compared to initial densities. Annual mortality of melaleuca never exceeded 6% in any year in sprayed plots but ranged from 11% to 25% in unsprayed plots. There was a significant year by treatment interaction indicating the importance of the environment on tree mortality. Limited seed production occurred on sprayed trees but never on unsprayed trees. Mean tree height increased by 19.6% in sprayed plots while declining by 30.6% in unsprayed plots. Coverage by native vegetation did not increase with decreasing melaleuca density. This is the first study with controls that quantifies the population level regulation of melaleuca by introduced biological control agents and corroborates other correlative studies that documented significant changes in melaleuca communities after the introduction and establishment of biological control agents.  相似文献   

14.
15.
Abstract. The forest structure in a large, relatively homogeneous area of pristine Picea abies taiga in the southern boreal region west of the Ural mountains was studied along four 500-m long transects. P. abies dominated the forest in association with Abies sibirica and Betula spp. The mean volume of living trees was 216 m3/ha. This value varied among the four transects, from 138 - 252 m3/ha. Mean density of trees (DBH > 1 cm) (and variation over the transects) was 2 064/ha (1670 - 2710). Living trees classified as dying or seriously damaged made up 2.9 (2.5 - 3.5) % of the living tree volume. Betula was an important canopy component and made up 16% of the living tree volume. The number of dead standing trees varied from 195 - 325/ha, corresponding to a volume of 10.8 - 70.7 m3/ha. The density of trees with a broken stem was 90 - 170/ha and their estimated volume 7.6 - 41.3 m3/ha. Standing dead trees and trees with broken stems represented 10.4 and 8.9% of the total standing tree volume (living + dead), respectively. The mean volume of decaying logs on the forest floor was 117 (84.4–156.2) m3/ha, corresponding to 54 (35 - 113) % of the living tree volume. The canopy-forming trees were present in the understory as abundant saplings and suppressed individuals. The size distribution of the dominant tree species resembled the inverse J-shape. Generally, the forest was characterized by a high small-scale structural variation and a larger-scale relative homogeneity. This pattern is consistent with forest dynamics where the forest consists of a small-scale mosaic of patches in different stages of recovery following disturbance. Our results suggest that the ecology and dynamics of extensive areas of natural boreal forests can be driven by small-scale disturbance.  相似文献   

16.
The purpose of these experiments was to estimate the number and distribution of Diaprepes abbreviatus (L.) neonate larvae dropping from the canopy of infested citrus trees. The number of neonates was monitored in the field using passive funnel traps in two simultaneous experiments and a separate experiment for an additional year. In one experiment, traps were placed from trunk to dripline in the cardinal directions under each of five trees (132 traps total). In a second experiment, eight traps were placed under each tree in the cardinal directions, one trap 30 cm from the trunk and one trap 30 cm from the dripline/direction for 25 trees (200 traps total). Larvae were collected weekly for 50 wk in conical tubes containing ethylene glycol as a preservative. Traps closer to the tree trunk captured more larvae than traps nearer the dripline. The area under the tree canopy was positively correlated with the total estimated number of larvae captured per tree. The estimated number of total larvae/tree over the course of our experiments ranged from 955 to 7,290. The highest number of neonate larvae observed in 1 wk was 67 +/- 6/m2. There was an inverse relationship between the number of traps beneath a tree and the number of trees that needed to be sampled to estimate mean population density with a given precision. However, there was a direct relationship between number of traps/tree and the total number of traps needed for a given precision. This passive technique could be used to quantify the destructive larval stage and to assess D. abbreviatus management strategies.  相似文献   

17.
幼虫密度对草地螟生长发育及繁殖的影响   总被引:1,自引:0,他引:1  
孔海龙  罗礼智  江幸福  张蕾  胡毅 《昆虫学报》2011,54(12):1384-1390
为了明确幼虫密度对草地螟Loxostege sticticalis种群增长的影响, 对室内条件下(温度22±1℃, RH 70%±5%, 光周期16L∶ 8D)不同幼虫密度[1, 10, 20, 30和40头/瓶(650 mL)]饲养的草地螟生长发育及繁殖进行了研究。结果表明: 幼虫密度对草地螟幼虫体色、 发育历期和存活率, 以及蛹重和成虫生殖等有显著影响。随着幼虫密度的增加, 幼虫体色黑化程度呈增强趋势, 幼虫密度大于10头/瓶时的体色黑化值均显著大于幼虫密度为1头/瓶时的体色黑化值(P<0.05)。20头/瓶的幼虫和蛹历期最短, 且随幼虫密度的增加而显著延长(P<0.05)。幼虫存活率以10头/瓶最高, 其他幼虫密度的幼虫存活率显著较低(P<0.05)。蛹重以1头/瓶的最重, 并随幼虫密度增加而显著下降(P<0.05)。成虫产卵量和交配率分别以1和20头/瓶的幼虫密度最高, 幼虫密度升高则产卵量、 交配率逐渐降低。成虫产卵历期随着幼虫密度的增加逐渐缩短。雌、 雄蛾寿命分别以10和20头/瓶幼虫密度时最长, 幼虫密度过高时雌雄蛾寿命又显著缩短(P<0.05)。生命表分析表明, 幼虫密度对草地螟种群增长指数有显著影响, 以10头/瓶幼虫密度的种群增长指数最高, 幼虫密度过高或过低时种群增长指数下降。据此认为, 幼虫密度是影响草地螟种群增长的重要因子之一。  相似文献   

18.
为了阐明草地螟Loxostege sticticalis大发生种群幼虫取食行为特征, 在室内条件下(温度22±1℃, 相对湿度70%)对不同幼虫密度[1, 10, 30头/瓶(650 mL)]饲养草地螟幼虫的食物利用率及消化酶活性进行了研究。结果表明: 幼虫中等(或高)密度对草地螟幼虫相对中肠重量、 相对取食量、 粪便干重、 食物利用率和近似消化率及总蛋白酶和亮氨酸氨肽酶活性影响显著。幼虫相对中肠重量以10头/瓶的幼虫密度最大, 1头/瓶的幼虫密度最小。随着幼虫密度的增加, 幼虫相对取食量和粪便干重增加, 而虫体干重减轻, 幼虫食物利用率降低。幼虫密度30头/瓶的幼虫相对取食量和粪便干重显著高于1和10头/瓶的, 而30头/瓶的幼虫食物利用率显著低于1头/瓶的。幼虫近似消化率随幼虫密度的逐渐增加而显著降低。幼虫密度10头/瓶的幼虫总蛋白酶和亮氨酸氨肽酶的活性显著高于1和30头/瓶的, 而淀粉酶的活性受幼虫密度影响不显著。随幼虫密度的增加, 幼虫相对中肠重量与总蛋白酶和亮氨酸氨肽酶活性变化趋势较为一致, 消化酶活性的变化可能与相对中肠重量大小有关。因此, 幼虫密度是影响草地螟幼虫取食行为的重要因子, 这些结果为阐明草地螟大发生种群与一般种群的为害特征提供了重要理论依据。  相似文献   

19.
Mass production of black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), larvae results in massive heat generation, which impacts facility management, waste conversion, and larval production. We tested daily substrate temperatures with different population densities (i.e., 0, 500, 1000, 5000, and 10 000 larvae/pan), different population sizes (i.e., 166, 1000, and 10 000 larvae at a fixed feed ratio) and air temperatures (i.e., 20 and 30 °C) on various production parameters. Impacts of shifting larvae from 30 to 20 °C on either day 9 or 11 were also determined. Larval activity increased substrate temperatures significantly (i.e., at least 10 °C above air temperatures). Low air temperature favored growth with the higher population sizes while high temperature favored growth with low population sizes. The greatest average individual larval weights (e.g., 0.126 and 0.124 g) and feed conversion ratios (e.g., 1.92 and 2.08 g/g) were recorded for either 10 000 larvae reared at 20 °C or 100 larvae reared at 30 °C. Shifting temperatures from high (30 °C) to low (20 °C) in between (∼10-d-old larvae) impacted larval production weights (16% increases) and feed conversion ratios (increased 14%). Facilities should consider the impact of larval density, population size, and air temperature during black soldier fly mass production as these factors impact overall larval production.  相似文献   

20.
Summary Both mechanical damage to mountain birch foliage and rearing of moth larvae on the trees reduced the growth of Epirrita autumnata larvae reared on these trees in the following year. The effects of physical damage and some other cues from insects were additive. On bird cherry the performance of Epirrita larvae was equal on untreated trees and on trees artificially defoliated in the previous year, but larval growth was reduced on previously insect-damaged branches. With mountain ash just physical damage per se reduced the performance of Epirrita larvae. On Salix phylicifolia there were no significant differences in the growth or survival of Epirrita on untreated control bushes and on bushes with partial larval damage during the previous year. Among untreated control trees the growth and survivorship of Epirrita were higher on fast-growing willow and bird cherry than on the slow-growing mountain birch. Mountain birch and mountain ash, the two deciduous tree species adapted to nutrient-poor soils, showed delayed inducible resistance triggered by defoliation (artificial or insect-made). This supports the hypothesis that delayed inducible resistance may be a passive response due to nutrient-stress caused by defoliation. On the other hand, the additional increase in the resistance of mountain birch triggered by specific cues from insects suggests that this response may be an evolved defense against leaf-eating insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号