首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of membranes in the activities of antimicrobial cationic peptides   总被引:18,自引:0,他引:18  
Cationic amphiphilic peptides that are found throughout nature have very broad-spectrum activities against microbes. The initial sites of interaction are with microbial membranes. Although dogma suggests that their lethal action involves disruption of the cytoplasmic membranes, a number of cationic peptides can traverse intact membranes to interact with internal targets.  相似文献   

2.
Cell-penetrating peptides (CPPs) are widely used as drug carriers, owing to their superior ability to cross cell membrane both alone and with cargos, such as genes and other particles. Understanding the translocation mechanism of CPP is significant for many therapeutic purposes, including targeting drug and gene delivery. In this study, we performed a coarse-grained molecular dynamics simulation to investigate the interaction mechanism between polyarginine peptides and asymmetric membranes. Results showed that peptides can penetrate through the lipid bilayer by inducing a hydrophilic hole formation in the asymmetric membrane. Furthermore, the lengthy peptide chain length (R4–R16 peptides) and high membrane asymmetry positively affect peptide penetration. Our study provides insights into the molecular-level interactions between peptides and asymmetric membranes, as well as suggestions for targeted gene and drug delivery.  相似文献   

3.
This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly affected by the lipid environment. Theoretical predictions are pointed out, and compared to experimental findings, if available. Among others, the following phenomena are discussed: interactions of interfacially adsorbed peptides, pore-forming amphipathic peptides, adsorption of charged proteins onto oppositely charged lipid membranes, lipid-induced tilting of proteins embedded in lipid bilayers, protein-induced bilayer deformations, protein insertion and assembly, and lipid-controlled functioning of membrane proteins.  相似文献   

4.
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.  相似文献   

5.
We have investigated the interactions between two carrier peptides and model membrane systems as well as the conformational consequences of these interactions. Studies performed with lipid monolayers at the air-water interface have enabled identification of the nature of the lipid-peptide interactions and characterization of the influence of phospholipids on the ability of these peptides to penetrate into lipidic media. Penetration experiments reveal that both peptides interact strongly with phospholipids. Conformational investigations indicate that the lipid-peptide interaction govern the conformational state of the peptides. Based on the ability of both peptides to promote ion permeabilization of both natural and artificial membranes, we propose a model illustrating the translocation process. For MPG, it is based on the formation of a β-barrel pore-like structure, while for Pep-1, it is based on association of helices.  相似文献   

6.
Polycationic peptides may present their C-termini in either amidated or acidic form; however, the effects of these conformations on the mechanisms of interaction with the membranes in general were not properly investigated up to now. Protonectarina-MP mastoparan with an either amidated or acidic C-terminus was utilized to study their interactions with anionic and zwitterionic vesicles, using measurements of dye leakage and a combination of H/D exchange and mass spectrometry to monitor peptide–membrane interactions. Mast cell degranulation, hemolysis and antibiosis assays were also performed using these peptides, and the results were correlated with the structural properties of the peptides. The C-terminal amidation promotes the stabilization of the secondary structure of the peptide, with a relatively high content of helical conformations, permitting a deeper interaction with the phospholipid constituents of animal and bacterial cell membranes. The results suggested that at low concentrations Protonectarina-MP interacts with the membranes in a way that both terminal regions remain positioned outside the external surface of the membrane, while the α-carbon backbone becomes partially embedded in the membrane core and changing constantly the conformation, and causing membrane destabilization. The amidation of the C-terminal residue appears to be responsible for the stabilization of the peptide conformation in a secondary structure that is richer in α-helix content than its acidic congener. The helical, amphipathic conformation, in turn, allows a deeper peptide–membrane interaction, favoring both biological activities that depend on peptide structure recognition by the GPCRs (such as exocytosis) and those activities dependent on membrane perturbation (such as hemolysis and antibiosis).  相似文献   

7.
Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interactions between different peptides/proteins (melittin, G proteins, alamethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling.  相似文献   

8.
The membrane interactions of four antimicrobial peptides, aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1, isolated from Australian tree frogs, are reviewed. All four peptides are amphipathic α-helices with a net positive charge and range in length from 13 to 25 residues. Despite several similar sequence characteristics, these peptides compromise the integrity of model membrane bilayers via different mechanisms; the shorter peptides exhibit a surface interaction mechanism while the longer peptides may form pores in membranes.  相似文献   

9.
Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.  相似文献   

10.
The interactions of amyloid peptides with cell membranes play an important role in maintaining the integrity and functionality of cell membrane. A thorough molecular-level understanding of the structure, dynamics, and interactions between amyloid peptides and cell membranes is critical to amyloid aggregation and toxicity mechanisms for the bench-to-bedside applications. Here we review the most recent computational studies of amyloid peptides at model cell membranes. Different mechanisms of action of amyloid peptides on/in cell membranes, targeted by different computational techniques at different lengthscales and timescales, are rationally discussed. Finally, we have proposed some new insights into the remaining challenges and perspectives for future studies to improve our understanding of the activity of amyloid peptides associated with protein-misfolding diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

11.
Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an α-helical structure from Lys3 to Lys21 and from Ala25 to Val35, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as Trp2 and Phe5 at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi. [BMB Reports 2013; 46(5): 282-287]  相似文献   

12.
The efficacies of many antimicrobial peptides are greatly reduced in the presence of high salt concentrations therefore limiting their development as pharmaceutical compounds. PEM-2-W5K/A9W, a short Trp-rich antimicrobial peptide developed based on the structural studies of PEM-2, has been shown to be highly active against various bacterial strains with less hemolytic activity. Here, correlations between membrane immersion depth, orientation, and salt-resistance of PEM-2 and PEM-2-W5K/A9W have been investigated via solution structure and paramagnetic resonance enhancement studies. The antimicrobial activities of PEM-2-W5K/A9W and PEM-2 against various bacterial and fungal strains including multidrug-resistant and clinical isolates under high salt conditions were tested. The activities of the salt-sensitive peptide PEM-2 were reduced and diminished at high salt concentrations, whereas the activities of PEM-2-W5K/A9W were less affected. The results indicated that the strong salt-resistance of PEM-2-W5K/A9W may arise from the peptide positioning itself deeply into microbial cell membranes and thus able to disrupt the membranes more efficiently.  相似文献   

13.
Abstract

Many important processes in life take place in or around the cell membranes. Lipids have different properties regarding their membrane-forming capacities, their mobility, shape, size and surface charge, and all of these factors influence the way that proteins and peptides interact with the membrane. In order for us to correctly understand these interactions, we need to be able to study all aspects of the interplay between lipids and peptides and proteins. Solution-state NMR offers a somewhat unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating peptide-lipid interaction, and special attention is given to the various membrane mimetics that are used to model the membrane. Examples from the field of cell-penetrating peptides and their lipid interactions will be given. The importance of studying lipid and peptide dynamics, which reflect on the effect that peptides have on bilayers, is highlighted, and in this respect, also the need for realistic membrane models.  相似文献   

14.
Antimicrobial peptides in toroidal and cylindrical pores   总被引:1,自引:0,他引:1  
Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or closes if glutamines in the N-termini are not located within the pore. On the other hand, when a melittin tetramer is embedded in toroidal pore or in a cylindrical pore, at the end of the simulation the pore is lined both with peptides and lipid headgroups, and, thus, can be classified as a toroidal pore. These observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores. Both alamethicin and melittin form amphiphilic helices in the presence of membranes, but their net charge differs; at pH ∼ 7, the net charge of alamethicin is − 1 whereas that of melittin is + 5. This gives rise to stronger electrostatic interactions of melittin with membranes than those of alamethicin. The melittin tetramer interacts more strongly with lipids in the toroidal pore than in the cylindrical one, due to more favorable electrostatic interactions.  相似文献   

15.
抗菌肽及抗菌肽转基因植物研究进展   总被引:1,自引:0,他引:1  
抗菌肽是一类小分子多肽,在生物体内分布广泛,具有广谱的抗菌性,是生物体内天然防御系统的一部分。主要介绍了抗菌肽的性质,类型,作用机制及抗菌肽转基因植物的研究进展。  相似文献   

16.
Grossfield A  Sachs J  Woolf TB 《Proteins》2000,41(2):211-223
A dipole lattice model for lipid membranes and their interactions with peptides is presented. It uses the Langevin dipole method to calculate electrostatic interactions in the heterogeneous membrane environment. A series of test cases are presented, including spherical charges, dipoles, side chain analogs, and helical peptides. The model consistently produces qualitatively correct results.  相似文献   

17.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

18.
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic α-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.  相似文献   

19.
Antimicrobial peptides have raised much interest as pathogens become resistant against conventional antibiotics. We review biophysical studies that have been performed to better understand the interactions of linear amphipathic cationic peptides such as magainins, cecropins, dermaseptin, delta-lysin or melittin. The amphipathic character of these peptides and their interactions with membranes resemble the properties of detergent molecules and analogies between membrane-active peptide and detergents are presented. Several models have been suggested to explain the pore-forming, membrane-lytic and antibiotic activities of these peptides. Here we suggest that these might be 'special cases' within complicated phase diagrams describing the morphological plasticity of peptide/lipid supramolecular assemblies.  相似文献   

20.
The identification of peptides that inhibit the biological functions of proteins was used as a means to explore protein/ligand interactions involved in molecular recognition processes. This approach is based on the use of synthetic combinatorial libraries (SCLs) for the rapid identification of individual peptides that block the interaction of proteins with their biological targets. Thus, each peptide mixture of an all-D -amino acid hexapeptide SCL in a positional scanning format was screened for its ability to inhibit the hemolytic activity of melittin, a model self-assembling protein. The potent inhibitory activity of the identified individual peptides suggests that protein-like complexes are able to specifically bind to peptides having an all-D configuration. These results also show that SCLs are useful for the identification of short, non-hydrolysable sequences having potential intracellular inhibitory activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号