首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Aim To evaluate the importance (number of species, plant cover) of the exotic flora in seven well‐defined sectors of one of the most important transportation waterways in North America. To determine the impact of exotic species on wetland plant diversity and reconstruct the spread of some invasive species. Location St Lawrence River, southern Québec. Methods The exotic flora (vascular plants) of wetlands bordering the St Lawrence River was studied using 713 sampling stations (25 m2) along a 560‐km long corridor. Results Exotic species represent 13.7% of the vascular flora of the St Lawrence wetlands. The relative plant cover occupied by exotic species is high in some of the fluvial sectors (42–44%), but low (6–10%) in the estuarine sectors. Wetlands (marshes) surrounding islands were particularly susceptible to invasion by exotic plants. Historical, abiotic and landscape factors may explain the differences observed between sites. Purple loosestrife (Lythrum salicaria L.) is the most common exotic species of the St Lawrence wetlands, but other species, namely flowering‐rush (Butomus umbellatus L.) and reed canary grass (Phalaris arundinacea L.) are much more invasive. There is no linear relationship between the exotic species cover and the diversity of wetland plants; low diversity sites can be dominated by either exotic or native plant species. In the other sites, exotic species generally have little impact on plant communities and can contribute to increase diversity. Common reed (Phragmites australis (Cav.) Trin. ex Steudel) and reed canary grass, both considered as exotic species in this study, clearly have a stronger impact on plant diversity than flowering‐rush and purple loosestrife. Main conclusions This study shows that the global impact of an invader cannot be adequately evaluated with only a few highly invaded sites. While nationwide strategies have been developed to control exotic species, large surveys are essential to adapt them to regional particularities.  相似文献   

2.
With the extensive spread of invasive species throughout North America and Europe there is an urgent need to better understand the morphological and physiological characteristics of successful invasive plants and the evolutionary mechanisms that allow introduced species to become invasive. Most ecological studies have focused on morphological differences and changes in community dynamics, and physiological studies have typically explored the differences between native and invasive species. In this study, 15 different genotypes of Phalaris arundinacea from both its native (European) and invasive (North American) range were grown in a common garden experiment to monitor the physiological differences between native and invasive genotypes. Here we present data that suggests high variability exists in the physiological traits among genotypes of P. arundinacea, yet genotypes from the native range are not necessarily physiologically inferior to the hybridized invasive genotypes. Previous work has shown that multiple introductions of P. arundinacea from various European locations to the United States resulted in numerous hybridization events, yielding more genetic variability and phenotypic plasticity in the invasive range. Of the genotypes studied, both morphological and physiological traits of genotypes with French origin were significantly different from the plants from the Czech Republic, North Carolina, and Vermont. The lack of clear differences between native and invasive genotypes indicates that physiological traits may be highly conserved in P. arundinacea and enhanced photosynthetic rates are not indicative of successful invasive genotypes. Instead, morphological traits and defensive secondary compound metabolism may play a more important role in the success of P. arundinacea within its invasive range, and patterns of genetic variation in physiological traits between invasive and native range may be more important than the mean traits of each region when explaining reed canarygrass’ invasive potential in North America.  相似文献   

3.
Urban stressors represent strong selective gradients that can elicit evolutionary change, especially in non‐native species that may harbor substantial within‐population variability. To test whether urban stressors drive phenotypic differentiation and influence local adaptation, we compared stress responses of populations of a ubiquitous invader, reed canary grass (Phalaris arundinacea). Specifically, we quantified responses to salt, copper, and zinc additions by reed canary grass collected from four populations spanning an urbanization gradient (natural, rural, moderate urban, and intense urban). We measured ten phenotypic traits and trait plasticities, because reed canary grass is known to be highly plastic and because plasticity may enhance invasion success. We tested the following hypotheses: (a) Source populations vary systematically in their stress response, with the intense urban population least sensitive and the natural population most sensitive, and (b) plastic responses are adaptive under stressful conditions. We found clear trait variation among populations, with the greatest divergence in traits and trait plasticities between the natural and intense urban populations. The intense urban population showed stress tolerator characteristics for resource acquisition traits including leaf dry matter content and specific root length. Trait plasticity varied among populations for over half the traits measured, highlighting that plasticity differences were as common as trait differences. Plasticity in root mass ratio and specific root length were adaptive in some contexts, suggesting that natural selection by anthropogenic stressors may have contributed to root trait differences. Reed canary grass populations in highly urbanized wetlands may therefore be evolving enhanced tolerance to urban stressors, suggesting a mechanism by which invasive species may proliferate across urban wetland systems generally.  相似文献   

4.
Invasive plants can simplify plant community structure, alter ecosystem processes and undermine the ecosystem services that we derive from biotic diversity. Two invasive plants, purple loosestrife ( Lythrum salicaria ) and reed canary grass ( Phalaris arundinacea ), are becoming the dominant species in many wetlands across temperate North America. We used a horizontal, observational study to estimate per capita effects (PCEs) of purple loosestrife and reed canary grass on plant diversity in 24 wetland communities in the Pacific Northwest, USA. Four measures of diversity were used: the number of species (S), evenness of relative abundance (J), the Shannon–Wiener index (H') and Simpson's index (D). We show that (1) the PCEs on biotic diversity were similar for both invasive species among the four measures of diversity we examined; (2) the relationship between plant diversity and invasive plant abundance ranges from linear (constant slope) to negative exponential (variable slope), the latter signifying that the PCEs are density-dependent; (3) the PCEs were density-dependent for measures of diversity sensitive to the number of species (S, H', D) but not for the measure that relied solely upon relative abundance (J); and (4) invader abundance was not correlated with other potential influences on biodiversity (hydrology, soils, topography). These results indicate that both species are capable of reducing plant community diversity, and management strategies need to consider the simultaneous control of multiple species if the goal is to maintain diverse plant communities.  相似文献   

5.
Reed canary grass (Phalaris arundinacea L.) is an aggressive invader that dominates wetlands throughout the US. We examined the effects of reed canary grass on wetland habitat, both vegetation canopy architecture and soil environment, and its impacts the arthropod community in an urban wetland in Portland, OR, USA. Reed canary grass dominance resulted in reduced vegetation canopy complexity through reductions in native vegetation diversity and canopy height. In addition, reed canary grass dominance significantly changed the wetland soil environment, decreasing soil organic content and increasing soil moisture. The arthropod community responded to these habitat changes, being distinct between plots dominated by reed canary grass and those dominated by native vegetation. In addition, diversity measures were significantly lower in plots dominated by reed canary grass. Variables describing both vegetation canopy complexity and soil environment were more important predictors than relative abundance of reed canary grass in multiple regression models developed for dominant arthropod taxa and community metrics. Our results suggest that the mechanism by which reed canary grass affects the wetland arthropod community is primarily indirect, through habitat changes, rather than by directly altering its food source.  相似文献   

6.
The environmental conditions in the new ranges of introduced plant species are often different from the conditions in their native ranges, and invasive plant species have been assumed to adapt to different environmental conditions by rapid ecological evolution in the invasive range after the introduction. Another interpretation of the change in plant traits after their introduction, however, is ecological fitting, which is based on the inherently high phenotypic plasticity of the species rather than on evolution. The Mediterranean haplotype M1 lineage of the wetland grass Phragmites australis was introduced to the coastal wetlands along the Gulf Coast of North America, where it is exposed to a different climate compared to its original range. The climate in the native range is arid or temperate with dry and hot summers, whereas the climate in the introduced range is warmer and has a higher and more uniform precipitation than that in the native range. This warmer and more humid environment is likely to pose different selection pressures to the plants in the introduced range and thus cause rapid evolutionary change and phenotypic differentiation in the introduced range. Here, we compared phenotypic traits of the M1 lineage from the native and introduced ranges in a common garden experiment to study the processes assisting the successful spread in the introduced range. Overall, the native and introduced groups were similar, but we detected a few phenotypic traits that diverged. Ecological fitting could be the fundamental mechanism by which the P. australis M1 lineage survives and spreads in the introduced Gulf Coast region. However, further research is needed to assess how the diverging traits observed in our study in Denmark (lower photosynthetic rates, lower chlorophylls concentration and higher leaf K concentration for the introduced than for the native genotypes) are expressed in the two ranges.  相似文献   

7.
Reed canarygrass is an important agricultural crop thought to be native to Europe, Asia, and North America. However, it is one of the worst wetland invaders in North American wetlands. The native North American status has been supported by the circumstantial evidence of early botanical records and the dating and location of herbarium specimens. The lack of empirical evidence has left the North American native status of the species in doubt and prevented comparisons between native North American and Eurasian populations of the species. We utilized genetic markers to compare a wide range of European and Asian collections to DNA extracted from 38 early North American herbarium specimens. The genetic data confirm the presence of a distinct population present throughout North America in the early twentieth century, but not present in Europe or Asia, ranging from Alaska, USA to New Brunswick, Canada. These native North American populations of reed canarygrass are likely present throughout Alaska today, as one specimen was collected as recently as 1996, and may still be present in other regions of North America. Future research can utilize this dataset to determine the origin of present-day invasive populations in North American wetlands.  相似文献   

8.
Biological invasions can be substantially influenced by the genetic sampling associated with a species' introduction. As a result, we assessed the genetic and evolutionary consequences of the entry and spread of the invasive grass Bromus tectorum (cheatgrass) across the United States midcontinent through an analysis of 54 populations, using enzyme electrophoresis. On average, these populations display 1.04 alleles per locus (A), 4.1% percent polymorphic loci per population (%P) and an expected mean heterozygosity (H(exp)) value of 0.009. Heterozygotes, which have been rarely reported for B. tectorum in North America, occur in three populations in the midcontinent and are likely novel multilocus genotypes that arose postimmigration. The midcontinent distribution of multilocus genotypes suggests that plant immigrants came directly from either the native range or the eastern United States, or both. Continued dispersal of preadapted genotypes and the assembly of populations that are genetic admixtures may enhance this invasion by increasing both the genetic diversity within populations and the selection of novel genotypes arising from occasional outcrossing. The potential for postimmigration evolution in most species points to the largely unrecognized need to block the introduction of new, potentially aggressive genotypes of an alien species already in the United States.  相似文献   

9.
The introduced subspecies of the common reed (Phragmites australis (Cav.) Trin. ex Steud. subsp. australis; Poaceae) is considered one of the most invasive plants in North American wetlands. Given its relatively low seed set and its tremendous capacity to spread via stolons or rhizomes, it has generally been thought that the spread of vegetative diaspores was responsible for the establishment of new populations. To test this hypothesis, we sampled a single plant from each of 345 visually-distinct common reed stands located along the shores of Lake St. François (southern Quebec, Canada). With a set of six nuclear microsatellite markers, we distinguished 134 different genotypes. The number of individuals sharing the same genotype ranged from one to 16, and averaged 2.1. Most genotypes were encountered only once. We examined the spatial distribution of the most frequent genotypes and found little evidence of clusters along the lakeshore. These data contradict the hypothesis that a common reed invasion is initiated by the introduction of vegetative diaspores from a few clones. Rather, they clearly support the alternative hypothesis that seeds were the primary diaspores responsible for the establishment of common reed populations.  相似文献   

10.
Climate change will likely affect flooding regimes, which have a large influence on the functioning of freshwater riparian wetlands. Low water levels predicted for several fluvial systems make wetlands especially vulnerable to the spread of invaders, such as the common reed (Phragmites australis), one of the most invasive species in North America. We developed a model to map the distribution of potential germination grounds of the common reed in freshwater wetlands of the St. Lawrence River (Québec, Canada) under current climate conditions and used this model to predict their future distribution under two climate change scenarios simulated for 2050. We gathered historical and recent (remote sensing) data on the distribution of common reed stands for model calibration and validation purposes, then determined the parameters controlling the species establishment by seed. A two‐dimensional model and the identified parameters were used to simulate the current (2010) and future (2050) distribution of germination grounds. Common reed stands are not widespread along the St. Lawrence River (212 ha), but our model suggests that current climate conditions are already conducive to considerable further expansion (>16,000 ha). Climate change may also exacerbate the expansion, particularly if river water levels drop, which will expose large bare areas propitious to seed germination. This phenomenon may be particularly important in one sector of the river, where existing common reed stands could increase their areas by a factor of 100, potentially creating the most extensive reedbed complex in North America. After colonizing salt and brackishwater marshes, the common reed could considerably expand into the freshwater marshes of North America which cover several million hectares. The effects of common reed expansion on biodiversity are difficult to predict, but likely to be highly deleterious given the competitiveness of the invader and the biological richness of freshwater wetlands.  相似文献   

11.
Whether an exotic species becomes integrated into a community or aggressively takes it over depends upon many interacting factors. Using contextual analyses, we combined genetic data about an invasive plant with information about the neighboring species, the community, and the environment to determine what factors enable a genotype or species to invade. We transplanted 50 individuals of each of three clones of the invasive grass Phalaris arundinacea, reed canary grass, into 150 random locations within a Vermont pasture. For each individual, we recorded clonal identity, neighbor identity, community indices (species richness and species diversity), and an environmental variable (soil moisture). The response variables were survivorship, above-ground biomass, below-ground biomass and the ratio of above- to below-ground biomass. Clonal identity affected both survivorship and below-ground biomass. The fastest tillering clone had poor survivorship but survivors produced a large amount of below-ground biomass, making this clone more likely to successfully overwinter. Neighbor species affected above- and below-ground biomass. Reed canary grass produced more above- and below-ground biomass when Anthoxanthum odoratum, a common pasture grass species, was abundant. Community attributes also influenced growth. Although we expected diverse plots to repel the invasion, plants in the more diverse plots had higher amounts of below-ground biomass. Finally, environmental effects also influenced growth. Reed canary grass produced more above-ground biomass in wetter plots, confirming that it does well under wet conditions.  相似文献   

12.
We found a new non-native haplotype of Phragmites australis in North America that provides convincing evidence for multiple introductions of this highly invasive reed from Europe. Prior to our detection of this new non-native haplotype, invasion of North America by this reed grass was thought to be limited to a single cp-DNA haplotype–haplotype M. However, we found two sites colonized by haplotype L1 in Quebec, Canada, a haplotype native to northern Europe, Great Britain and Romania. Because the invasion of North America by P. australis is ongoing, and because there is evidence for intra- and inter-specific hybridization and increased fecundity resulting from outcrossing, more attention should be paid to genetic differences and associated vigor of populations of introduced Phragmites across North America.  相似文献   

13.
Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiology. Here we present a novel case investigating the role of fitness trait values and phenotypic plasticity to global change factors between conspecific lineages of Phragmites australis. We hypothesized that due to observed differences in the competitive success of North American-native and Eurasian-introduced P. australis genotypes, Eurasian-introduced P. australis would exhibit greater fitness in response to global change factors. Plasticity and plant performance to ambient and predicted levels of carbon dioxide and nitrogen pollution were investigated to understand how invasion pressure may change in North America under a realistic global change scenario. We found that the introduced Eurasian genotype expressed greater mean trait values in nearly every ecophysiological trait measured – aboveground and belowground – to elevated CO2 and nitrogen, outperforming the native North American conspecific by a factor of two to three under every global change scenario. This response is consistent with “jack and master” phenotypic plasticity. We suggest that differences in plant nitrogen productivity, specific leaf area, belowground biomass allocation, and inherently higher relative growth rate are the plant traits that may enhance invasion of Eurasian Phragmites in North America. Given the high degree of genotypic variability within this species, and our limited number of genotypes, our results must be interpreted cautiously. Our study is the first to demonstrate the potential importance of jack-and-master phenotypic plasticity in plant invasions when facing imminent global change conditions. We suggest that jack-and-master invasive genotypes and/or species similar to introduced P. australis will have an increased ecological fitness, facilitating their invasion in both stressful and resource rich environments.  相似文献   

14.
Recognition of wetland ecosystem services has led to substantial investment in wetland restoration in recent decades. Wetland restorations can be designed to meet numerous goals, among which reestablishing a diverse native wetland plant community is a common aim. In agricultural areas, where previously drained wetland basins can fill with eroded sediment from the surrounding landscape, restoration often includes excavation to expose buried seed banks. The extent to which excavation improves the diversity of wetland plant communities is unclear, particularly in terms of longer‐term outcomes. We examined plant species diversity and community composition in 24 restored agricultural wetlands across west‐central Minnesota, U.S.A. In all study wetlands, hydrology was restored by removing subsurface drainage and plugging drainage ditches, thus reestablishing groundwater connectivity and hydroperiod (“business as usual” treatment). In half of the wetlands, accumulated sediment was removed from the basin and redeposited on the surrounding landscape (“excavated” treatment). Initially, sediment removal significantly decreased invasive species cover, particularly of hybrid cattail (Typha × glauca) and reed canary grass (Phalaris arundinacea), and increased community diversity and evenness. Over time, the effects of sediment removal diminished, and eventually disappeared by approximately 6 years after restoration. While our results demonstrate that sediment removal improves initial restoration outcomes for plant communities, longer‐term benefits require sustained management, such as invasive species control or resetting of basins through additional excavation.  相似文献   

15.
The evolution of increased competitive ability (EICA) hypothesis provides a compelling explanation for the success of invasive species. It contends that because alien plants have escaped their coevolved natural enemies, selection pressures favor a diversion of resources from herbivore defense to traits that confer increased competitive ability. Here, we provide evidence for EICA in the noxious grassland invader Lespedeza cuneata, by comparing the ancestral genotype introduced to North America in 1930 with modern‐day invasive (North American) and native (Japanese) genotypes. We found that the invasive genotype was a better competitor than either the native or the ancestral genotype. Further, the invasive genotype exhibited greater induced resistance but lower constitutive resistance than the ancestral and native genotypes. Our results suggest that selection has played a pivotal role in shaping this invasive plant species into a more aggressive, but less constitutively defended competitor.  相似文献   

16.
入侵地和原产地盐沼植物互花米草种子萌发性状的地理变异 种子萌发是植物早期生活史中最重要的阶段,决定了植物的生态位和地理分布范围,对外来植物的入侵潜力有重要影响。盐沼植物互花米草(Spartina alterniflora)在中国沿海滩涂的入侵范围最大,并已入侵到比原产地更低的纬度范围,这为我们研究互花米草在不同地理区域之间以及沿纬度梯度的萌发性状差异和适应提供了契机。在控温培养箱中淡水培养条件下,我们比较研究了来自入侵地(19°–40° N)10 个地点和原产地(27°–43° N)16个地点不同纬度互花米草种群的种子萌发性状差异,以及这种差异与各种 群来源地潮差和气候因素的相关性。原产地互花米草种群种子的萌发率和萌发指数比入侵地种群分别高10%和20%,但入侵地互花米草种群的萌发速度比原产地快3 d。入侵地互花米草种群的萌发率和萌发 指数随着纬度升高呈现线性递增的变化趋势,而原产地呈现线性递减的变化趋势。入侵地和原产地互花米草种群的平均萌发时间都与纬度呈现线性负相关。入侵地互花米草种群的萌发率和萌发指数与年日均温、年日最低均温、和年日最高均温呈现负相关,而在原产地呈现相反的相关关系。入侵地和原产地互花米草种群的平均萌发时间分别与年日均温、年日最低均温和年日最高均温呈现正相关关系。我们的研究结果表明,入侵地和原产地互花米草种群的萌发率和萌发指数已沿纬度进化出不同的渐变群格局,但平均萌发时间进化出与原产地一致的纬度渐变群格局,即在生物入侵过程中沿纬度梯度种子萌发策略会随着入侵时间和过程而发生变化。  相似文献   

17.
The full effects of biological invasions may be underestimated in many areas because of cryptogenic species, which are those that can be identified as neither native nor introduced. In North America, the cattails Typha latifolia, T. angustifolia, and their hybrid T. × glauca are increasingly aggressive invaders of wetlands. There is a widespread belief that T. latifolia is native to North America and T. angustifolia was introduced from Europe, although there has so far been little empirical support for the latter claim. We used microsatellite data and chloroplast DNA sequences to compare T. latifolia and T. angustifolia genotypes from eastern North America and Europe. In both species, our data revealed a high level of genetic similarity between North American and European populations that is indicative of relatively recent intercontinental dispersal. More specifically, the most likely scenario suggested by Approximate Bayesian Computation was an introduction of T. angustifolia from Europe to North America. We discuss the potential importance of our findings in the context of hybridization, novel genomes, and increasingly invasive behaviour in North American Typha spp.  相似文献   

18.
We compared the levels and distribution of genetic diversity in Eurasian and North American populations of Brachypodium sylvaticum (Huds.) Beauv. (false brome), a newly invasive perennial bunchgrass in western North America. Our goals were to identify source regions for invasive populations, determine the number of independent invasion events, and assess the possibility that postinvasion bottlenecks and hybridization have affected patterns of genetic diversity in the invaded range. We tested the hypothesis that this Eurasian grass was accidentally introduced into two areas in Oregon and one site in California by examining nuclear microsatellites and chloroplast haplotype variation in 23 introduced and 25 native populations. In the invaded range, there was significantly lower allelic richness (R(S)), observed heterozygosity (H(O)) and within-population gene diversity (H(S)), although a formal test failed to detect a significant genetic bottleneck. Most of the genetic variation existed among populations in the native range but within populations in the invaded range. All of the allelic variation in the invaded range could be explained based on alleles found in western European populations. The distribution of identified genetic clusters in the North American populations and the unique alleles associated with them is consistent with two historical introductions in Oregon and a separate introduction to California. Further analyses of population structure indicate that intraspecific hybridization among genotypes from geographically distinct regions of western Europe occurred following colonization in Oregon. The California populations, however, are more likely to be derived from one or perhaps several genetically similar regions in the native range. The emergence and spread of novel recombinant genotypes may be facilitating the rapid spread of this invasive species in Oregon.  相似文献   

19.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   

20.
Rapid evolutionary adjustments to novel environments may contribute to the successful spread of invasive species, and can lead to niche shifts making range dynamics unpredictable. These effects might be intensified by artificial selection in the course of breeding efforts, since many successful plant invaders were deliberately introduced and cultivated as ornamentals. We hypothesized that the invasion success of Buddleja davidii, the ornamental butterfly bush, is facilitated by local adaptation to minimum temperatures and thus, exhibits unpredictable range dynamics. To assess the potential effects of adaptive evolution and artificial selection on the spread of B. davidii, we combined a common garden experiment investigating local adaptation to frost, with ecological niche modelling of the species’ native and invasive ranges. We expected that populations naturalized in sub‐continental climate are less susceptible to frost than populations from oceanic climate, and that the invasive range does not match predictions based on climatic data from the native range. Indeed, we revealed significant variation among invasive B. davidii populations in frost resistance. However, frost hardiness was not related to geographic location or climatic variables of the populations’ home site, suggesting that invasive B. davidii populations are not locally adapted to minimum temperatures. This is in line with results of our ecological niche model that did not detect a niche shift between the species’ native range in China, and its invasive range in Europe and North America. Furthermore, our niche model showed that the potential invasive range of B. davidii is still not completely occupied. Together with the frost resistance data obtained in our experiment, the results indicate that climatic conditions are currently not limiting the further spread of the species in Europe and North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号