首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5'-Hydroxyaverantin (HAVN) was isolated from a mold, Emericella heterothallica IFO 30842. Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4, produced neither aflatoxins nor precursors in yeast extract-sucrose (YES) medium. When the postmicrosome (cytosol) fraction of NIAH-26, which had been prepared from the culture in YES medium, was incubated with norsolorinic acid (NA) in the presence of NADH or NADPH, averantin (AVN) was produced. The reverse reaction from AVN to NA was promoted by the addition of NAD or NADP (dehydrogenase reaction). When the microsome fraction of NIAH-26 was incubated with AVN, HAVN was produced in the presence of NADPH (monooxygenase reaction). HAVN was, furthermore, oxidized to averufin (AVR) by the cytosol fraction of NIAH-26 in the presence of NAD or NADP (dehydrogenase reaction). In the feeding experiments with A. parasiticus NIAH-26, aflatoxins were produced from AVN, HAVN, NA, and AVR but not from averufanin or averythrin. These results indicate that the reaction sequence NA in equilibrium AVN----HAVN----AVR is involved in the biosynthetic pathway of aflatoxins. The enzyme activities described here were dependent on the culture medium, and no enzyme activities were observed in the nonaflatoxigenic strain A. oryzae SYS-2 (IFO 4251).  相似文献   

2.
5'-Hydroxyaverantin (HAVN) was isolated from a mold, Emericella heterothallica IFO 30842. Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4, produced neither aflatoxins nor precursors in yeast extract-sucrose (YES) medium. When the postmicrosome (cytosol) fraction of NIAH-26, which had been prepared from the culture in YES medium, was incubated with norsolorinic acid (NA) in the presence of NADH or NADPH, averantin (AVN) was produced. The reverse reaction from AVN to NA was promoted by the addition of NAD or NADP (dehydrogenase reaction). When the microsome fraction of NIAH-26 was incubated with AVN, HAVN was produced in the presence of NADPH (monooxygenase reaction). HAVN was, furthermore, oxidized to averufin (AVR) by the cytosol fraction of NIAH-26 in the presence of NAD or NADP (dehydrogenase reaction). In the feeding experiments with A. parasiticus NIAH-26, aflatoxins were produced from AVN, HAVN, NA, and AVR but not from averufanin or averythrin. These results indicate that the reaction sequence NA in equilibrium AVN----HAVN----AVR is involved in the biosynthetic pathway of aflatoxins. The enzyme activities described here were dependent on the culture medium, and no enzyme activities were observed in the nonaflatoxigenic strain A. oryzae SYS-2 (IFO 4251).  相似文献   

3.
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1'S,5'S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1'R,5'R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1'S,5'S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.  相似文献   

4.
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1′S,5′S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1′R,5′R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1′S,5′S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.  相似文献   

5.
(1'R,2'S)-(-)-aflatoxins are produced from racemic versiconal hemiacetal acetate (VHA) through complicated pathways, including a metabolic grid involving VHA, versiconol acetate (VOAc), versiconol, and versiconal (VHOH), and a reaction sequence from VHOH to versicolorin A (VA) through (-)-versicolorin B (VB) [or (+/-)-versicolorin C] (K. Yabe, Y. Ando, and Y. Hamasaki, J. Gen. Microbiol. 137:2469-2475, 1991; K. Yabe, Y. Ando, and T. Hamasaki, Agric. Biol. Chem. 55:1907-1911, 1991). In this study, we examined stereochemical changes of substances formed during the conversion of VHA to VA by using chiral high-performance liquid chromatography. In cell-free experiments using the cytosol of Aspergillus parasiticus NIAH-26, both (2'S)- and (2'R)-VOAc enantiomers were formed at about a 1:2 ratio from racemic VHA in the presence of NADPH and dichlorvos (dimethyl 2,2-dichlorovinylphosphate). Also, the esterase activity catalyzing the conversion of VHA to VHOH or of VOAc to versiconol did not show the stereospecificity for the 2' carbon atom of VHA or VOAc. However, when racemic VHA or racemic VHOH was incubated with the cytosol, (1'R,2'S)-(-)-VB was formed exclusively. Furthermore, only (1'R,2'S)-(-)-VB, and not (1'S,2'R)-(+) antipode, served as a substrate for desaturase activity in the microsome fraction catalyzing the conversion of VB to VA. These results demonstrate that the stereoconfiguration of bis-furan moiety in aflatoxin molecules is determined by the cyclase enzyme catalyzing the reaction from VHOH to VB, and the (1'R,2'S)-(-) configuration was further confirmed by the subsequent desaturase reaction. Remarkably, we found nonenzymatic racemization in both the (2'R)- and (2'S)-VHA enantiomers, and it was dependent upon the temperature and alkaline conditions.  相似文献   

6.
During aflatoxin biosynthesis, 5′-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5′-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed.  相似文献   

7.
During aflatoxin biosynthesis, 5'-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5'-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed.  相似文献   

8.
In the aflatoxin biosynthetic pathway, 5'-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2'S,5'S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5'-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.  相似文献   

9.
The structures of the lipooligosaccharides (LOSs) from Haemophilus ducreyi ITM 5535 and ITM 3147 and a fresh clinical isolate, ACY1, have been investigated. Oligosaccharides were obtained from phenol-water-extracted LOS by mild acid hydrolysis and were studied by methylation analysis, fast atom bombardment and electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The major oligosaccharide obtained from all strains was a nonasaccharide with the structure beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-D-Galp-(1-->4)-D-a lpha-D-Hepp- (1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp - (1-->3)]4)-L-alpha-D-Hepp-Kdo (Kdo stands for 3-deoxy-D-manno-octulosonic acid) and is thus identical to that identified as the major oligosaccharide in H. ducreyi ITM 2665 (E. K. H. Schweda, A. C. Sundström, L. M. Eriksson, J.A. Jonasson, and A. A. Lindberg, J. Biol. Chem. 269:12040-12048, 1994). Electrospray ionization mass spectrometry on O-deacylated LOS from H. ducreyi ITM 5535 obtained after treatment with anhydrous hydrazine gave evidence for the presence of a sialylated major compound, Neu5Ac alpha(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-D-Gal p- (1-->4)-D-alpha-D-Hepp-(1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp -(1-->2)-L- alpha-D-Hepp-(1-->3)]4)-L-alpha-D-Hepp-Kdo(P)-O-deacylated lipid A (Neu5Ac stands for N-acetylneuraminic acid). However, an even larger oligosaccharide could be isolated from all strains as a minor component, viz., the undecasaccharide beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-d-Galp-(1-->4)-beta-D-glcNAcp-(1-->3)-beta-D-Galp-(1-->4)-D-alpha-D-Hepp-(1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)]4-L-alpha-D-Hepp-Kdo, which represents an N-acetyl lactosamine disaccharide unit elongation of the LOS outer core. No Sialylation of this latter minor component undecasaccharide was detected.  相似文献   

10.
beta (1-->3)-Glucans are known for their potent ability to induce nonspecific inflammatory reactions and are believed to play a role in bioaerosol-induced respiratory symptoms. An inhibition enzyme immunoassay (EIA) was developed for the quantitation of beta (1-->3)-glucans in dust samples from occupational and residential environments. Immunospecific rabbit antibodies were produced by immunization with bovine serum albumin-conjugated laminarin [beta (1-->3)-glucan] and affinity chromatography on epoxy-Sepharose-coupled beta (1-->3)-glucans. The laminarin-based calibration curve in the inhibition EIA ranged from approximately 40 to 3,000 ng/ml (15 to 85% inhibition). Another beta (1-->3)-glucan (curdlan) showed a similar inhibition curve but was three to five times less reactive on a weight basis. Pustulan, presumed to be a beta (1-->6)-glucan, showed a parallel dose-response curve at concentrations 10 times higher than that of laminarin. Control experiments with NaIO4 and beta (1-->3)-glucanase treatment to destroy beta (1-->6)- and beta (1-->3)-glucan structures, respectively, indicate that the immunoreactivity of pustulan in the assay was due to beta (1-->3)-glucan and not to beta (1-->6)-glucan structures. Other polysaccharides, such as mannan and alpha (1-->6)-glucan, did not react in the inhibition EIA. Beta (1-->3)-Glucan extraction of dust samples in water (with mild detergent) was performed by heat treatment (120 degrees C) because aqueous extracts obtained at room temperature did not contain detectable beta (1-->3)-glucan levels. The assay was shown to detect heat-extractable beta (1-->3)-glucan in dust samples collected in a variety of occupational and environmental settings. On the basis of duplicate analyses of dust samples, a coefficient of variation of approximately 25% was calculated. It was concluded that the new inhibition EIA offers a useful method for indoor beta (1-->3)-glucan exposure assessment.  相似文献   

11.
1. (5'R)-(5'-2H1)Adenosine [(5'R):(5'S) = 85:15] was prepared by a procedure which involved inter alia the reduction of 6-N-benzoyl-2',3'-O-isopropylidene-5'-oxoadenosine with a reagent obtained from LiAl2H4 and (-)-isoborneol. 2. (5'S)-(5'-2H1)AdoCbl [(5'S):(5'R) = 74:26] (AdoCbl = 5'-deoxyadenosylcobalamin) was synthesized by reacting cobal(I)amin with (5'R)-2'-3'-O-isopropylidene-5'-tosyl-(5'-2H1) adenosine followed by acid hydrolysis to remove the isopropylidene protective group. 3. (5'R)-(5'-2H1)AdoCbl [(5'R):(5'S) = 77:23] was prepared by reacting cobalt(I)amin with (5'S)-5'-chloro-5'-(5'-2H1)deoxyadenosine [(5'S):(5'R) = 80:20] obtained in turn from (5'R)-(5'-2H1)adenosine. The reaction sequence involved two consecutive inversions at the C-5' atom of adenosine 4. Comparison of the 500-MHz 1H-NMR spectra of unlabelled, (5'S)- and (5'R)-(5'-2H1)AdoCbl allowed assignment of the triplet at 0.58 ppm and the doublet at 1.525 ppm to the diastereotopic 5'-HRe and 5'-HSi atoms, respectively. On acidification, these two protons gave rise to two triplets at 0.11 ppm and 1.78 ppm indicating that torsion had occurred around the C-4'--C-5' bond. 5. Samples of (5'R)- and (5'S)-(5'-2H1)AdoCbl were incubated with methylmalonyl-CoA mutase from Propionibacterium shermanii. Examination by 1H-NMR spectroscopy at 500 MHz revealed partial loss and stereochemical scrambling of the deuterium at the 5' position. This indicates transient conversion of the C-5' atom into a torsiosymmetric group and hence cleavage of the cobalt-carbon bond during interaction with the enzyme. The mechanism by which deuterium is lost remains to be elucidated.  相似文献   

12.
In the aflatoxin biosynthetic pathway, 5′-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2′S,5′S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5′-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.  相似文献   

13.
W Takasaki  Y Tanaka 《Chirality》1992,4(5):308-315
Antibody-mediated extraction followed by chiral high-performance liquid chromatography (HPLC) was applied to stereoselective determination in human and rat plasma of the active metabolite [(2S,1'R,2'S)-trans-alcohol] with three chiral centers of Loxoprofen, a 2-arylpropionic acid antiinflammatory agent after oral administration. Antiserum against the (1'R,2'S)-cyclopentanol moiety was obtained from a rabbit immunized with bovine serum albumin conjugate linked to the propionic acid moiety, in which another chiral center is located. Then, the immunoglobulin G purified by a protein A column was coupled to BrCN-activated Sepharose 4B. Plasma samples were applied to the immobilized antibody column. After washing the column to remove unrequired stereoisomers, a mixture of two diastereomers whose configurations were 1'R,2'S in the cyclopentanol moiety was extracted with 95% methanol. The solvent was evaporated and the residue was derivatized with (+)-(R)-1-(1-naphthyl)ethylamine as a chiral reagent to separate the diastereomers by HPLC. This combined analytical method showed the stereoselective metabolism of Loxoprofen in human, that is, 64% of the total amount of four trans-alcohol stereoisomers was in the 2S,1'R,2'S form, which is the active metabolite. This phenomenon was also observed in rats given Loxoprofen and its (2S)- and (2R)-isomers, and is explained by stereoselective ketone reduction of Loxoprofen to the (1'R,2'S)-trans-alcohol and inversion from 2R to 2S in the propionic acid moiety. Antibody-mediated extraction should be a selective and simple clean-up method for determining haptens with complicated structures, combined with an appropriate analytical method.  相似文献   

14.
Rhizobium fredii participates in a nitrogen-fixing symbiosis with soybeans, in a strain-cultivar-specific interaction, and past studies have shown that the cell surface and extracellular polysaccharides of rhizobia function in the infection process that leads to symbiosis. The structural analysis of the capsular polysaccharides (K antigens) from strain USDA257 was performed in this study. The K antigens were extracted from cultured cells with hot phenol-water and purified by size exclusion chromatography. We isolated two structurally distinct K antigens, both containing a high proportion of 3-deoxy-D-manno-2-octulosonic acid (Kdo). The polysaccharides were characterized by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry, nuclear magnetic resonance spectrometry, and gas chromatography-mass spectrometry analyses. The primary polysaccharide, which constituted about 60% of the K-antigen preparation, consisted of repeating units of mannose (Man) and Kdo, [-->)3-beta-D-Manp-(1-->5)-beta-D-Kdop-(2-->], and a second polysaccharide consisted of 2-O-MeMan and Kdo, [-->)3-beta-D-2-O-MeManp-(1-->5)-beta-D-Kdop-(2-->]. These structures are similar to yet distinct from those of other strains of R. fredii and R. meliloti, and this finding provides further evidence that the K antigens of rhizobia are strain-specific antigens which are produced within a conserved motif.  相似文献   

15.
S Kaneko  M Sano    I Kusakabe 《Applied microbiology》1994,60(9):3425-3428
alpha-L-Arabinofuranosidase (EC 3.2.1.55) was purified from culture supernatant of Bacillus subtilis 3-6. The enzyme had a molecular weight of 61,000 and displayed maximum activity at pH 7.0 and 60 degrees C. It released arabinose from O-alpha-L-arabinofuranosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-x ylopyranos e (A1X2), O-beta-D-xylopyranosyl-(1-->4)-[O-alpha-L-arabinofuranosyl-(1-->3)]- O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (A1X3), and arabinan, but not from O-beta-D-xylopyranosyl-(1-->2)-O-alpha-L- arabinofuranosyl-(1-->3)-O-beta-D-xylopyranosyl-(1-->4)-O-beta-D-xylopyr anosyl- (1-->4)-D-xylopyranose (A1X4), arabinoxylan, gum arabic, or arabinogalactan.  相似文献   

16.
Two routes for the conversion of 5′-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5′-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases—a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD+-NADP+, and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.  相似文献   

17.
The lipopolysaccharide (LPS) of Salmonella enteritidis has been implicated as a virulence factor of this organism. Therefore, the LPS from a stable virulent isolate, SE6-E21, was compared with that from an avirulent isolate, SE6-E5. The LPSs were extracted, and the high-molecular-weight (HMW) LPS was separated from the low-molecular-weight (LMW) LPS for both isolates. Both the HMW and LMW LPSs were characterized by glycosyl composition and linkage analyses. Immunochemical characterization was performed by Western blotting using factor 9 antiserum and using S. typhimurium antiserum which contains factors 1, 4, 5, and 12(2). In addition, the polysaccharides released by mild acid hydrolysis were isolated and subjected to hydrolysis by bacteriophage P22, which contains endorhamnosidase activity. The resulting oligosaccharides were purified by using Bio-Gel P4 gel permeation chromatography and characterized by nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectrometry (FAB-MS), tandem MS-MS, and matrix-assisted laser desorption time of flight MS. The results show that the HMW LPS O-antigen polysaccharides from both isolates are comprised of two different repeating units, -[-->2)-[alpha-Tyvp-(1-->3)]beta-D-Manp-(1-->4)-alpha-L-R hap-(1-->3)-alpha-D-Galp-(1-->]- (structure I) and [-->2)-[alpha-Tyvp-(1-->3)]beta-D-Manp-(1-->4)-alpha--L-R hap-(1-->3)-[alpha-D-Glcp-(1-->4)]alpha-D-Galp-(1-->]- (structure II). The LMW LPSs from both isolates contains truncated O-antigen polysaccharide which is comprised of only structure I. In the virulent SE6-E21 isolate, the HMW LPS has a structure I/II ratio of 1:1, while in the avirulent SE6-E5 isolate, this ratio is 7:1. While the 7:1 ratio represents the published level of glucosylation for S. enteritidis LPS as well as for S. enteritidis LPS purchased from Sigma Chemical Co., the 1:1 ratio found for the virulent SE6-E21 is identical to the high level of glucosylation reported for S. typhi LPS. Thus, the LPS from the virulent SE6-E21 isolate produces an S. typhi-like LPS. Furthermore, the amount of O-antigen polysaccharide in SE6-E21 was twice that in SE6-E5.  相似文献   

18.
The stereochemistry at C2' and C3' of two diastereomers of 2',3'-dibromo-7-epi-10-deacetylcephalomannine (6 and 7), which were synthesized by reacting 7-epi-10-deacetylcephalomannine (5) with bromine, were assigned unambiguously based on crystallographic studies of 6. The X-ray crystallographic analysis shows that 6 adopts an absolute configuration of (2'S,3'R), and 7 can be assigned as (2'R,3'S) configuration. The side-chain conformation of 6 was revealed to be different with the known hydrophobic collapse and the apolar conformations, as found in solid state and in solution. However, most side-chain torsion angles of 6 were found to be very similar to those of tubulin-bound T-shaped conformation (T-Taxol). Both 6 and 7 showed strong in vitro paclitaxel-like activity.  相似文献   

19.
Three 5-hydroxy-seco-carotenoids were isolated from seeds of Pittosporum tobira. These structures were determined to be (3S,3'S,5'?)-3,3'-di(tetradecanoyloxy)-5'-hydroxy-5,6,5',6'-diseco-beta,beta-carotene-5,6,6'-trione (1), (3S,5?,3'S,5'R,6'S,9'Z)-3-tetradecanoyloxy-5',6'-epoxy-5,3'-dihydroxy-5',6'-dihydro-5,6-seco-beta,beta-caroten-6-one (2), and (3S,5?,3'S,5'R,6'R)-3-tetradecanoyloxy-5,3',5'-trihydroxy-6',7'-didehydro-5',6'-dihydro-5,6-seco-beta,beta-caroten-6-one (3) based on analysis of UV-vis, IR, FAB MS, and NMR spectroscopic data.  相似文献   

20.
We detected biosynthetic activity for aflatoxins G1 and G2 in cell extracts of Aspergillus parasiticus NIAH-26. We found that in the presence of NADPH, aflatoxins G1 and G2 were produced from O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin, respectively. No G-group aflatoxins were produced from aflatoxin B1, aflatoxin B2, 5-methoxysterigmatocystin, dimethoxysterigmatocystin, or sterigmatin, confirming that B-group aflatoxins are not the precursors of G-group aflatoxins and that G- and B-group aflatoxins are independently produced from the same substrates (O-methylsterigmatocystin and dihydro-O-methylsterigmatocystin). In competition experiments in which the cell-free system was used, formation of aflatoxin G2 from dihydro-O-methylsterigmatocystin was suppressed when O-methylsterigmatocystin was added to the reaction mixture, whereas aflatoxin G1 was newly formed. This result indicates that the same enzymes can catalyze the formation of aflatoxins G1 and G2. Inhibition of G-group aflatoxin formation by methyrapone, SKF-525A, or imidazole indicated that a cytochrome P-450 monooxygenase may be involved in the formation of G-group aflatoxins. Both the microsome fraction and a cytosol protein with a native mass of 220 kDa were necessary for the formation of G-group aflatoxins. Due to instability of the microsome fraction, G-group aflatoxin formation was less stable than B-group aflatoxin formation. The ordA gene product, which may catalyze the formation of B-group aflatoxins, also may be required for G-group aflatoxin biosynthesis. We concluded that at least three reactions, catalyzed by the ordA gene product, an unstable microsome enzyme, and a 220-kDa cytosol protein, are involved in the enzymatic formation of G-group aflatoxins from either O-methylsterigmatocystin or dihydro-O-methylsterigmatocystin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号