首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The C-banding pattern of nine meiotic chromosomes of common wheat (Triticum aestivum L.) as described. In F1s of crosses between monosomics of Chinese Spring and two Spanish wheat cultivars, univalent chromosomes were used to aid the recognition and analysis of the C-banding pattern for the individual chromosomes. The identification of one chromosome involved in one translocation in Chinese Spring x Pané 247 has been made through heterochromatin bands observed in the chromosomes involved in multivalents.  相似文献   

2.
The review considers the effect of the rye 1BL/1RS translocation in the common wheat genome on qualitative and quantitative traits: grain quality, resistance to diseases, productivity and adaptivity, parthenogenesis, regeneration in anther culture, frequency of chromosome aberrations and frequency of cross-pollination. Data on special features of transmission of the 1BL/1RS translocation through male and female gametes are presented.  相似文献   

3.
 The chromosomal location and genetic characterization of powdery mildew resistance genes were determined in the common wheat lines MocZlatka, Weihenstephan Stamm M1N and in a resistant line of Triticum aestivum ssp. spelta var. duhamelianum. Monosomic analyses revealed that one major dominant gene is located on chromosome 7A in each of the lines tested. Allelism tests with Pm1 in the backcross-derived line Axminster/8*Cc on 7A indicated that the resistance genes are alleles at the Pm1 locus. These alleles are now designated Pm1a in line Axminster/8*Cc, Pm1b in MocZlatka, Pm1c in Weihenstephan Stamm M1N, and Pm1d in T. spelta var. duhamelianum, respectively. Received: 10 November 1997 / Accepted: 29 January 1998  相似文献   

4.
Summary In the progeny of a hybrid between monotelosomic line 3B of Chinese Spring wheat and Chinese Spring — Aegilops longissima ditelosomic addition line G a cytologically stable strain was selected consisting of 20 wheat chromosome pairs, one pair of telosomic chromosome 3BL and one pair of telosomic longissima chromosome G. Inoculating Chinese Spring — Aegilops longissima addition and substitution lines with ten different powdery mildew isolates, partial resistance was observed. The infection grade as well as the number of spores/cm2 leaf area were significantly reduced.  相似文献   

5.
Spatial relationships between chromosomes of the same genome, both homologous and non-homologous, were studied in root-tip cells of common wheat, Triticum aestivum (2n = 6x = 42). Mean distance between members of all the 21 homologous pairs (seven in each of the three genomes) and of 45 out of the 63 possible non-homologous combinations of two (21 in each genome) were determined. To minimize disruption of nuclear chromosomal arrangement, the cells were pretreated with cold temperature either in tap water or in a physiological medium (White solution) and distances between cytologically marked chromosomes were measured at metaphase. Comparison of distances for homologues with those for non-homologues indicated clearly that, within each genome, the homologous chromosomes were significantly closer to one another than were the non-homologues. Distances between homologues were similar in all three genomes, as were distances between non-homologues. The data are consistent with the hypothesis that the chromosomes of each genome of common wheat are arranged in the somatic nucleus in a highly specific ordered pattern. In this hypothetical arrangement, homologous chromosomes are closely associated, while the nonhomologues occupy definite positions with respect to one another. The universality of the phenomenon and its cellular mechanism and biological significance are discussed.  相似文献   

6.
Inheritance studies of gliadin loci on chromosomes 1A and 1B were carried out in the progeny from crosses between cv Salmone and six other common wheat varieties. The map distance between the Rg-1 locus for glume colour and the gliadin locus Gli-B1 on the satellite of chromosome 1B was calculated as 2.0±0.6 cM. An additional gliadin locus, Gli-B5, was mapped between Gli-B1 and Rg-1, 1.4 cM from the former. A genetic distance of 1.8±0.4 cM was obtained between the Hg-1 locus for hairy glumes and a gliadin locus that seems to be remote from Gli-A1 and homoeologous to Gli-B5. Statistically significant differences in recombination values were found in the six crosses, indicating the influence of genotype on the frequency of recombination. The similarity in chromosomal location of seed storage protein genes in wheat, barley and rye is discussed.  相似文献   

7.
8.
A set of differential isolates of Blumeria graminis f.sp. tritici was used to identify 10 alleles at the Pm3 locus on the short arm of chromosome 1A. Three F3 populations were used to map Pm3h in Abessi, Pm3i in line N324, and Pm3j alleles in GUS 122 relative to microsatellite markers. In total, 13 marker loci were mapped on chromosome 1AS and 1 marker on 1AL. The order of marker loci in the 3 mapping populations is consistent with previously published maps. All 3 alleles were mapped in the distal region of chromosome 1AS. The present study indicated that microsatellite markers are an ideal marker system for comparative mapping of alleles at the same gene locus in different mapping populations. The linkage distances of the closest microsatellite marker, Xgwm905-1A, to Pm3h, Pm3i, and Pm3j were 3.7 cM, 7.2 cM, and 1.2 cM, respectively. The microsatellite marker Xgwm905-1A cannot be used to distinguish between Pm3 alleles. The development of specific markers for individual Pm3 alleles is discussed on the basis of the recently cloned Pm3b allele.  相似文献   

9.
Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.)   总被引:7,自引:0,他引:7  
The aim of this study was to develop an improved procedure for preparation of chromosome suspensions, and to evaluate the potential of flow cytometry for chromosome sorting in wheat. Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes were characterized and the chromosome content of all peaks on wheat flow karyotype was determined for the first time. Only chromosome 3B could be discriminated on flow karyotypes of wheat lines with standard karyotype. Remaining chromosomes formed three composite peaks and could be sorted only as groups. Chromosome 3B could be sorted at purity >95% as determined by microscopic evaluation of sorted fractions that were labeled using C-PRINS with primers for GAA microsatellites and for Afa repeats, respectively. Chromosome 5BL/7BL could be sorted in two wheat cultivars at similar purity, indicating a potential of various wheat stocks for sorting of other chromosome types. PCR with chromosome-specific primers confirmed the identity of sorted fractions and suitability of flow-sorted chromosomes for physical mapping and for construction of small-insert DNA libraries. Sorted chromosomes were also found suitable for the preparation of high-molecular-weight DNA. On the basis of these results, it seems realistic to propose construction of large-insert chromosome-specific DNA libraries in wheat. The availability of such libraries would greatly simplify the analysis of the complex wheat genome.  相似文献   

10.
The objective of this study was to characterize the leaf rust resistance locusLr1 in wheat. Restriction fragment length polymorphism (RELP) analysis was performed on the resistant lineLr1/6*Thatcher and the susceptible varieties Thatcher and Frisal, as well as on the segregating F2 populations. Seventeen out of 37 RFLP probes mapping to group 5 chromosomes showed polymorphism betweenLr1/6*Thatcher and Frisal, whereas 11 probes were polymorphic between the near-isogenic lines (NILs)Lr1/6*Thatcher and Thatcher. Three of these probes were linked to the resistance gene in the segregating F2 populations. One probe (pTAG621) showed very tight linkage toLr1 and mapped to a single-copy region on chromosome 5D. The map location of pTAG621 at the end of the long arm of chromosome 5D was confirmed by the absence of the band in the nulli-tetrasomic line N5DT5B of Chinese Spring and a set of deletion lines of Chinese Spring lacking the distal part of 5DL. Twenty-seven breeding lines containing theLr1 resistance gene in different genetic backgrounds showed the same band asLr1/6*Thatcher when hybridized with pTAG621. The RFLP marker was converted to a sequence-tagged-site marker using polymerase chain reaction (PCR) amplification. Sequencing of the specific fragment amplified from both NILs revealed point mutations as well as small insertion/deletion events. These were used to design primers that allowed amplification of a specific product only from the resistant lineLr1/6*Thatcher. This STS, specific for theLr1 resistance gene, will allow efficient selection for the disease resistance gene in wheat breeding programmes. In addition, the identification of a D-genome-specific probe tightly linked toLr1 should ultimately provide the basis for positional cloning of the gene.  相似文献   

11.
High temperature (>30 °C) at the time of grain filling is one of the major causes of yield reduction in wheat in many parts of the world, especially in tropical countries. To identify quantitative trait loci (QTL) for heat tolerance under terminal heat stress, a set of 148 recombinant inbred lines was developed by crossing a heat-tolerant hexaploid wheat (Triticum aestivum L.) cultivar (NW1014) and a heat-susceptible (HUW468) cultivar. The F(5), F(6), and F(7) generations were evaluated in two different sowing dates under field conditions for 2 years. Using the trait values from controlled and stressed trials, four different traits (1) heat susceptibility index (HSI) of thousand grain weight (HSITGW); (2) HSI of grain fill duration (HSIGFD); (3) HSI of grain yield (HSIYLD); and (4) canopy temperature depression (CTD) were used to determine heat tolerance. Days to maturity was also investigated. A linkage map comprising 160 simple sequence repeat markers was prepared covering the whole genome of wheat. Using composite interval mapping, significant genomic regions on 2B, 7B and 7D were found to be associated with heat tolerance. Of these, two (2B and 7B) were co-localized QTL and explained more than 15 % phenotypic variation for HSITGW, HSIGFD and CTD. In pooled analysis over three trials, QTL explained phenotypic variation ranging from 9.78 to 20.34 %. No QTL × trial interaction was detected for the identified QTL. The three major QTL obtained can be used in marker-assisted selection for heat stress in wheat.  相似文献   

12.
13.
Allele diversities of four markers specific to intron three, exon four and promoter regions of the aluminum (Al) resistance gene of wheat (Triticum aestivum L.) TaALMT1 were compared in 179 common wheat cultivars used in international wheat breeding programs. In wheat cultivars released during the last 93 years, six different promoter types were identified on the basis of allele size. A previous study showed that Al resistance was not associated with a particular coding allele for TaALMT1 but was correlated with blocks of repeated sequence upstream of the coding sequence. We verified the linkage between these promoter alleles and Al resistance in three doubled haploid and one intercross populations segregating for Al resistance. Molecular and pedigree analysis suggest that Al resistance in modern wheat germplasm is derived from several independent sources. Analysis of a population of 278 landraces and subspecies of wheat showed that most of the promoter alleles associated with Al resistance pre-existed in Europe, the Middle East and Asia prior to dispersal of cultivated germplasm around the world. Furthermore, several new promoter alleles were identified among the landraces surveyed. The TaALMT1 promoter alleles found within the spelt wheats were consistent with the hypothesis that these spelts arose on several independent occasions from hybridisations between non-free-threshing tetraploid wheats and Al-resistant hexaploid bread wheats. The strong correlation between Al resistance and Al-stimulated malate efflux from the root apices of 49 diverse wheat genotypes examined was consistent with the previous finding that Al resistance in wheat is conditioned primarily by malate efflux. These results demonstrate that the markers based on intron, exon and promoter regions of TaALMT1 can trace the inheritance of the Al resistance locus within wheat pedigrees and track Al resistance in breeding programmes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV 1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively. Received: 5 November 1999 / Accepted: 14 April 2000  相似文献   

15.
Recombination at the Rp1 locus of maize.   总被引:11,自引:0,他引:11  
Summary The Rp1 locus of maize determines resistance to races of the maize rust fungus (Puccinia sorghi). Restriction fragment length polymorphism markers that closely flank Rp1 were mapped and used to study the genetic fine structure and role of recombination in the instability of this locus. Susceptible progeny, lacking the resistance of either parent, were obtained from test cross progeny of several Rp1 heterozygotes. These susceptible progeny usually had non-parental genotypes at flanking marker loci, thereby verifying their recombinational origin. Seven of eight Rp1 alleles (or genes) studied were clustered within about 0.2 map units of each other. Rpl G, however, mapped from 1–3 map units distal to other Rp1 alleles. Rp5 also mapped distally to most Rp1 alleles. Other aspects of recombination at Rp1 suggested that some alleles carry duplicated sequences, that mispairing can occur, and that unequal crossing-over may be a common phenomenon in this region; susceptible progeny from an Rp1 A homozygote had recombinant flanking marker genotypes, and susceptible progeny from an Rp1 DlRp1 F heterozygote showed both possible nonparental flanking marker genotypes.  相似文献   

16.
根据已知小麦正源基因TaDEP1 cDNA序列设计引物,成功克隆了小麦TaDEP1基因组序列,发现该基因包含5个外显子,4个内含子.通过比较该基因在六倍体普通小麦A、B、D基因组中的差异,筛选出可以区分A、B、D基因组的分子标记Ta956.以中国春缺体-四体系为材料,利用该标记将TaDEP1基因定位于小麦5A、5B和5...  相似文献   

17.
RFLP markers for the wheat powdery mildew resistance genes Pm1 and Pm2 were tagged by means of near-isogenic lines. The probe Whs178 is located 3 cM from the Pm1 gene. For the powdery mildew resistance gene Pm2, two markers were identified. The linkage between the Pm2 resistance locus and one of these two probes was estimated to be 3 cM with a F2 population. Both markers can be used to detect the presence of the corresponding resistance gene in commercial cultivars. Bulked segregant analysis was applied to identify linkage disequillibrium between the resistance gene Pm18 and the abovementioned marker, which was linked to this locus at a distance of 4 cM. Furthermore, the RAPD marker OPH-111900 (5-CTTCCGCAGT-3) was selected with pools created from a population segregating for the resistance of Trigo BR 34. The RAPD marker was mapped about 13 cM from this resistance locus.  相似文献   

18.
The chemical speciation of silicon in xylem exudate from wheat (Triticum aestivum L.) was examined by 29Si NMR spectroscopy. Wheat plants were grown to maturity in silicon‐free nutrient medium, and then transferred to a solution containing 0.02 mm 29Si‐enriched silicic acid. After 30 min the shoots were excised and xylem exudate was collected. Within 10 min the Si concentration of the xylem exudate reached values greatly in excess of that of the starting nutrient solution, eventually reaching levels as high as 8 mm . Silicon‐29 nuclear magnetic resonance spectra indicated the existence of only two Si‐containing species in the xylem exudate, mono and disilicic acid (H4SiO4o and (HO)3Si(µ‐O)Si(OH)3o) in a ratio of approximately 7 : 1. Significantly, there was no evidence of organosilicate complexes. Nevertheless, the efficiency by which the plant concentrates aqueous silicon indicates active mechanisms of silicon transport across root cell membranes.  相似文献   

19.
Investigation of low-temperature (LT) tolerance in cereals has commonly led to the region of the vyn-A1 vernalization gene or its homologue in related genomes. Two cultivars, one a non-hardy spring wheat and one a very cold-hardy winter wheat, whose growth habits are determined by the Vrn-A1 (spring habit) and vrn-A1 (winter habit) alleles, were chosen to produce reciprocal near-isogenic lines (NILs). These lines were then used to determine the relationship between rate of phenological development and the degree and duration of LT tolerance gene expression. Each allele was isolated in the genetic backgrounds of the non-hardy spring wheat 'Manitou' and the very cold-hardy winter wheat 'Norstar'. The effects of each allele on phenological development and low-temperature tolerance (LT50) were determined at regular intervals over a 4 degrees C acclimation period of 0-98 d. The vegetative/reproductive transition, as determined by final leaf number (FLN), was found to be a major developmental factor influencing LT tolerance. Possession of a vernalization requirement increased both the length of the vegetative growth phase and LT tolerance. Similarly, increased FLN in spring Norstar and winter Manitou NILs delayed their vegetative/reproductive transition and increased their LT tolerance relative to Manitou. Although the winter Manitou NILs had a lower FLN than the spring Norstar NILs, they were able to extend their vegetative stage to a similar length by increasing the phyllochron (interval between the appearance of successive leaves). Cereal plants have four ways of increasing the length of the vegetative phase, all of which extend the time that low-temperature tolerance genes are more highly expressed: (1) vernalization; (2) photoperiod responses; (3) increased leaf number; and (4) increased length of the phyllochron.  相似文献   

20.
Results of investigation of peculiarities of common wheat hybridological analysis for a discrete character, resistance for powdery mildew, governed by the alien gene from Ae. sharonensis are present. Relation between genome structure of crossed introgressive lines and deviation of empirical ratios of segregation in F2 from theoretical, based on the assumption about monogenic inheritance of considered character is established. The approach to the quantitative count of influence of such connection on distortion of actual segregation in comparison with theoretically expected ratio is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号