首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Emu Bay Shale Lagerstätte (Cambrian Series 2, Stage 4) occurs on the north coast of Kangaroo Island, South Australia. Over 50 species are known from here, including trilobites and non‐biomineralized arthropods, palaeoscolecids, a lobopodian, a polychaete, vetulicolians, nectocaridids, hyoliths, brachiopods, sponges and chancelloriids. A new chelicerate, Wisangocaris barbarahardyae gen. et sp. nov., is described herein, based on a collection of some 270 specimens. It is up to 60 mm long, with the length of the cephalic shield comprising about 30% that of the exoskeleton. The cephalic margin has three pairs of bilaterally‐symmetrical small triangular spines. A pair of small eyes is placed well forwards on the ventral margin of the cephalic shield. The trunk comprises 11 segments that increase in length while narrowing posteriorly, each possibly bearing a pair of biramous appendages; the most posterior segment is almost square whereas the others are transversely elongated. The spatulate telson is proportionately longer than in taxa such as Sanctacaris, Utahcaris and Leanchoilia. Up to eight (?four pairs) of 3 mm‐long elements bearing alternating inward‐curving short and long spines beneath the cephalic shield are interpreted as basipodal gnathobases, part of a complex feeding apparatus. A well‐developed gut includes a stomach within the cephalic shield; it extends to the base of the telson. In a few specimens there are shell fragments within the gut, including those of the trilobite Estaingia bilobata (the most common species in the biota); these fragments have sharp margins and extend across the gut lumen. The species may have been a predator or a scavenger, ingesting material already broken up by a larger predator/scavenger. The morphology of this taxon shares many overall body features with Sanctacaris, and some with Sidneyia, particularly its gnathobasic complex. These chelicerate affinities are corroborated by phylogenetic analyses.  相似文献   

2.
Cambrian rocks in South Australia occur in the Stansbury, Arrowie, eastern Officer and Warburton Basins. The succession in the Stansbury and Arrowie Basins can be divided into three sequence sets (supersequences), 1, 2 and 3. Sequence set 1 can be divided into five third-order sequences: 1.0, 1.1A, 1.1B, 1.2 and 1.3. Trilobites from the Stansbury and Arrowie Basins are restricted largely to the lower part of the succession. Four trilobite zones are recognized: Abadiella huoi (latest Atdabanian–earliest Botoman), Pararaia tatei, Pararaia bunyerooensis and Pararaia janeae Zones (all Botoman). Trilobites higher in the succession are known from only a few horizons and in part correlate with the upper Lower Cambrian Lungwangmiaoan Stage of China, equivalent to the top Toyonian. Pagetia sp. has been reported in the Coobowie Formation of the Stansbury Basin, thus suggesting an early Middle Cambrian age.The Cambrian faunas of the Warburton Basin range in age from early Middle Cambrian (Late Templetonian) to very Late Cambrian, although the richest faunal assemblages are late Middle Cambrian (Ptychagnostus punctuosus to Goniagnostus nathorsti Zones). Conodonts, including Cordylodus proavus, occur in a Datsonian fauna.The Arrowie Basin contains the most complete and best studied archaeocyath succession in the Australia–Antarctica region. The Warriootacyathus wilkawillensis, Spirillicyathus tenuis and Jugalicyathus tardus Zones from the lower Wilkawillina Limestone (Arrowie Basin) and equivalents are correlated with the Atdabanian. Botoman archaeocyathids occur higher in the Wilkawillina Limestone. The youngest (Toyonian) archaeocyath fauna in Australia occurs in the Wirrealpa Limestone (Arrowie Basin).Brachiopods and molluscs of the Arrowie and Stansbury Basins can be divided into four biostratigraphic assemblages. Several informal Early Cambrian SSF biostratigraphic assemblages are recognized. Probable tabulate-like corals occur in the Botoman Moorowie Formation. Seven informal acritarch assemblages occur in the Early Cambrian of the Stansbury and Arrowie Basins. Trace fossils may mark the Precambrian–Cambrian boundary. Only two of several tuffaceous horizons from the Stansbury and Arrowie Basins have been dated (i) a date of 522.0 ± 2.1 Ma from the Heatherdale Shale of the Stansbury Basin, about 400 m above latest Atdabanian archaeocyathids and (ii) a date of 522.0 ± 1.8 Ma from the lower part of the Billy Creek Formation in the Arrowie Basin. Neither date is regarded as reliable.  相似文献   

3.
Abstract:  Hexaconularia , a Lower Cambrian small shelly fossil (SSF) that has been allied with conulariids and scyphozoan cnidarians, is redescribed and refigured. A salient feature of this monospecific genus is the presence of distinct apical and abapical regions. The apical region probably represents an embryonic shell that apparently lacked a basal attachment structure. Comparisons of this feature with the apical end of the smallest known conulariids and with conulariids terminating in an apical wall (schott) reveal substantial differences in structure and ornamentation. Differences in apical anatomy between conulariids and Arthrochites , possibly the nearest SSF relative of Hexaconularia , are also apparent. Comparisons of Hexaconularia with Punctatus , an SSF taxon showing distinct apical and abapical regions in both posthatching specimens and prehatching embryos, suggest that the early development of Hexaconularia was direct. These results have important implications for hypotheses of a conulariid/scyphozoan affinity for Hexaconularia and its possible SSF relatives, and they suggest that Hexaconularia -bearing strata may yield prehatching embryos of this genus.  相似文献   

4.
A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia   总被引:3,自引:0,他引:3  
Two Cambrian lepidote metazoans known from different respective types of preservation have been compared in order to elucidate their biology and affinities. The widely distributed Lower Cambrian Halkieria is represented by isolated hollow sclerites, probably of originally calcareous composition. The Middle Cambrian Wiwaxia is known from the Burgess Shale as isolated sclerites (scales and spines) and as more or less complete individuals. Although Halkieria sclerites were mineralized and those of Wiwaxia were probably not, there are fundamental structural and morphological similarities between the two. Both bad an imbricating scaly and spiny armour consisting of hollow sclerites with a longitudinally fibrous structure. The sclerites did not grow, but were probably moulted during the course of ontogenetic growth. Halkieria and Wiwaxia are regarded as closely related. Both are referred to the Order Sachitida He 1980. The sclerite armour of Halkieria is reconstructed on the template provided by Wiwaxia. The interpretation of sachitid sclerites as protective armour is an alternative to the interpretation by Jell (1981, Alcheringa 5 )that sachitid sclerites were respiratory organs in an animal of probable annelid affinities. Sachitids are interpreted as sluggish, benthic deposit feeders that do not belong to any recognized phylum.  相似文献   

5.
Abstract: Red calcareous Middle Cambrian palaeosols from the upper Moodlatana Formation in the eastern Flinders Ranges of South Australia formed in well‐drained subhumid floodplains and include a variety of problematic fossils. The fossils are preserved like trace fossil endichnia but do not appear to be traces of burrows or other animal movement. They are here regarded as remains of sessile organisms, comparable with fungi or plants living in place, and are formally named as palaeobotanical form genera under provisions of the International Code of Botanical Nomenclature. Most common are slender (0.5–2 mm) branching filaments flanked by green‐grey reduction haloes within the red matrix of palaeosol surface horizons (Prasinema gracile gen. et sp. nov.). Other axial structures (Prasinema nodosum and P. adunatum gen. et spp. nov.) are larger and show distinctive surface irregularities (short protuberances and irregular striations, respectively). The size and form of these filaments are most like rhizines of soil‐crust lichens. Other evidence of life on land includes quilted spheroids (Erytholus globosus gen. et sp. nov.) and thallose impressions (Farghera sp. indet.), which may have been slime moulds and lichens, respectively. These distinctive fossils in Cambrian palaeosols represent communities comparable with modern biological soil crusts.  相似文献   

6.
With a particular focus on the earliest Cambrian diversification of small shelly fossils (SSFs), stratigraphic analysis was conducted on the lower Cambrian Zhongyicun Member at the Hongjiachong section in the Chengjiang area, Yunnan, China. From ca. 3-m-thick bedded phosphorites (Unit A) in the lower part of the member, we recovered unique SSFs. This interval with 4 SSF-bearing horizons is characterized by the dominance in blade-shaped SSFs, including Halkieria spp., Brushenodus prionodes, Sinosachites delicatus, and Pteronus sp., and the absence of typical tube/cap-shape SSFs common in the Fortunian. This interval tentatively named “Halkieria-dominant interval” is stratigraphically positioned ca. 3 m below the previously known level of the oldest mollusks in the continuous bedded phosphorite sequence between the Anabarites trisulcatus-Protohertzina anabarica Assemblage Zone and the overlying Paragloborilus subglobosa-Purella squamulosa Assemblage Zone of the Fortunian (the earliest Cambrian). The “Halkieria-dominant interval” yields some SSFs likely affiliated with ostracods in view of size and morphology, suggesting that arthropod body fossils appeared in the Fortunian, considerably earlier than previously believed.  相似文献   

7.
The tetraradial or pentaradial fossil embryos and related hatched individuals from the early Cambrian Kuanchuanpu Formation are of great interest for understanding the early evolution of medusozoans. The phylogenetic and evolutionary significance of their external and internal characters (e.g. manubrium, tentacles, septa and claustra) is still controversial. Here we describe a new pentamerous medusozoan, Hanagyroia orientalis gen. et sp. nov., characterized by five well-developed perradial oral lips around a remarkably large manubrium, a conspicuous equatorial groove, and five short interradial pairs of extensile tentacles at the bell margin. Internally, five broad and stout interradial septa join horizontally to form the claustra. Hanagyroia orientalis lacks the frenula, apertural lappet and velarium seen in coeval microfossils and extant cubozoans. Although H. orientalis resembles extant coronate scyphozoans in its round medusa-like bell margin and equatorial groove, cladistic analysis suggests close affinity with cubozoans. Hanagyroia may represent an intermediate morphological type between scyphozoans and cubozoans. The well-developed oral lips and paired short strong tentacles of Hanagyroia suggest direct development.  相似文献   

8.
A carbonate bed of the Pardailhan Formation, early Cambrian, southern Montagne Noire (southern France), provided microfossils such as Hyolithellus sp., Torellella cf. mutila and Torellella sp. along with numerous disarticulated pieces of composite skeletons such as valves of the brachiopod Eoobolus priscus and of the bradoriid Monceretia erisylvia, and chancelloriid sclerites (Chancelloria sp.). The assemblage also furnished a rich set of sclerites from the tommotiid Kelanella altaica. Five morphological variations of the latter have been identified. The presence of concentric ribs formed by distal inflation of selected shell laminae in Kelanella supports its assignment to the camenellans. More particularly, the presence of transverse structures within the internal cavity (septa) of Kelanella suggests a close relationship with the Lapworthellidae. However, the latter differ from Kelanella by the continuous morphological variation along their scleritome which is also composed of simple conical elements with uniform ornamentation. Several forms of Kelanella are similar to mitral and sellate sclerites of Camenella, whereas some other forms are comparable to Kennardia. The new material suggests that Kelanella occupies a transitional position between Lapworthellidae and the grouping of Tommotiidae and Kennardiidae. Such a phylogenetic position also implies that the number of sclerite morphotypes tends to decrease within the camenellan scleritome during evolution.  相似文献   

9.
Abundant, well-preserved specimens of spheroidal organic-walled microfossil Yurtusia uniformis are reported from the basal Cambrian Yanjiahe Formation in the Changyang area of Hubei Province, South China. Thin and hollow processes extend between the double walls of the vesicle. The single to multiple internal bodies within the vesicle cavity are observed in the genus for the first time, representing reproductive structures (dividing daughter cells). A small circular perforation may occur on the vesicle wall to release the internal bodies. Morphological analyses of specimens preserved at various life stages reveal that processes gradually became longer as the vesicle grew in size. The internal bodies (daughter cells) underwent several successive divisions within the vesicle, which was accompanied by the simultaneous growth of both vesicle and processes. The regular growth of cells, formation and release of daughter cells, and the remarkable morphological similarity between extant algae and the studied microfossils suggest that Yurtusia uniformis is probably a green microalga that may be closely related to the Trebouxiophyceae or even Chlorellales (Chlorophyta). The growth and reproductive mode of individuals indicates that Y. uniformis is an actively growing vegetative cell of microalgae, rather than a metabolically inert cyst or resting spore. A life cycle involving vegetative growth and asexual reproduction is proposed for Y. uniformis on the basis of the life histories of modern chlorophytes. The multiple internal cells may represent autospores produced by a mature autosporangium during asexual reproduction, which subsequently developed into separate young vegetative cells after their release from the opened autosporangium.  相似文献   

10.
The tommotiid Paterimitra pyramidalis Laurie, 1986, is redescribed based on well‐preserved material from the lower Cambrian Wilkawillina, Wirrapowie and Ajax limestones of the Flinders Ranges, South Australia. The material shows that the scleritome of Paterimitra pyramidalis includes three sclerite morphotypes (S1, S2 and L). Detailed shell microstructure studies show striking similarities with both the paterinid brachiopod Askepasma toddense and the tommotiid Eccentrotheca helenia, which strengthens the suggested evolutionary link between tommotiids and brachiopods. Based on the partly articulated specimens and similarities in shell microstructure and sclerite morphology with Eccentrotheca, Paterimitra pyramidalis is reconstructed as a tube‐dwelling, epifaunal, sessile, filter‐feeder with an organic pedicle‐like attachment structure. The proposed reconstruction of the scleritome comprises a basal unit composed of one S1 and one S2 sclerite, as well as an unresolved number of L sclerites lining a coniform tubular structure.  相似文献   

11.
Carbon and oxygen isotopes were studied in fossiliferous Cambrian carbonates in northwestern Hunan Province (South China) and in northern Anhui and southern Shandong provinces (North China). Two major C isotope excursions related to biological events occur in the Wangcun section (Yongshun County, northwestern Hunan), which consists of a slope carbonate sequence (510 m thick) containing abundant trilobites. The first C isotope excursion (δ13C value shifts from -2.3‰ to 2‰) occurs near the boundary between the Qingxudong and Aoxi formations, close to the traditional Lower-Middle Cambrian boundary. The second excursion (δ13C value shifts from 0‰ to 3‰) occurs in the interval between the Linguagnostus reconditus Zone and the Glyptagnostus reticulatus Zone. The base of the G. reticulatus Zone define the base of the Paibi Stage and Furongian Series. Similar C isotope excursions also occur in shallow - water carbonate sections in North China. In Jiagou section near Huainan (Anhui Province), recently considered an important interval for defining the lower-middle Cambrian boundary because of dramatic changes in the trilobite fauna (extinction of redlichiids and appearances of ptychopariids), a negative C isotope excursion (δ13C value shifts from +1.21‰ to -1.93‰) occurs at the top of the lower member of the Mantou Formation. In the Gushan section (Changqing County, Shandong Province), a C isotope excursion (δ13C value shifts from -0.04‰ to 2.23‰) occurs at the base of the Changshan Formation and is coincident with the base of the Chuangia Zone. This excursion can be correlated with the excursion in the lower part of Glyptagnostus reticulatus Zone in the Wangcun section. The above two distinct C isotope excursions, which occur both in slope carbonates in South China and in shallow - water carbonates in North China, have also been recognized in Cambrian sections on other continents, and they coincide with global mass extinctions of trilobites. The two excursions evidently reflect global changes of Cambrian sea level, and they have utility for Cambrian subdivisions and for both regional and global stratigraphic correlation. In addition, a negative carbon excursion below the base of the Ptychagnostus atavus Zone in the Wangcun section supports previous suggestions that the FAD of P. atavus can be considered as a global correlatable horizon within the middle Cambrian.  相似文献   

12.
《Palaeoworld》2015,24(4):393-399
All living echinoderms have a pentaradial symmetry that is unique within the Bilateria. However, the Cambrian origin of echinoderm radial/pentaradiate symmetry is a long-standing problem. During the Cambrian (542–488 Ma), gogiids were the most common stalked echinoderm characterized by an “irregularly” plated body. Based on recently discovered material from the Balang Formation (Cambrian Series 2), eastern Guizhou, China, three unusual, partially disarticulated specimens of Guizhoueocrinus have clear evidence for a helical body plan. This helical plating is only evident in partially disarticulated specimens, thus a crypto-helical body construction is present. Crypto-helical construction in a gogiid raises the possibility of a phylogenetic connection among helicoplacoids, gogiids, and Helicocystis. The crypto-helical body construction may be an important evolutionary innovation among pre-radiate echinoderms.  相似文献   

13.
Siliceous “star cobbles”, referred to the enigmatic genus Brooksella, are abundant in the Conasauga Formation of the Coosa River Valley of Alabama and Georgia, USA. Explaining the phylogenetic affinities and taphonomic history of Brooksella has been difficult and contentious. Brooksella has, at times, been referred to: 1, the cnidarian order Scyphomedusae; 2, the cnidarian class Protomedusae (order Brooksellida); 3, as algae; 4, as a trace fossil; and 5, as a feature of inorganic origin.Macroscopic, microscopic, and computer-assisted tomographic analysis of Brooksella from the Conasauga Formation suggests that the “star cobbles” represent exceptionally preserved body fossils of simple construction. Morphology of star cobbles is most consistent with a siliceous (hexactinellid) sponge interpretation. Specimens show wide morphologic variation, including gradational patterns, suggesting that a single species name (Brooksella alternata) should be used to embrace all forms described from the Coosa Valley. B. alternata includes specimens having a variable number of radially disposed lobes divided by radial grooves, and often a central opening inferred to be an osculum on one side. Lobes in many specimens terminate in small openings. Small craterlike structures, inferred to be ostia, are present on the external surface. Radial internal cavities occupy the lobes. Specimens from the Conasauga Formation have siliceous spicules preserved surficially and internally.The three-dimensional nature of most “star cobbles” suggests rapid fossil diagenesis, perhaps mediated by the activities of microbial consortia that quickly formed biofilms around the dead hosts.  相似文献   

14.
15.
The Cambrian Explosion is arguably the most extreme example of a biological radiation preserved in the fossil record, and studies of Cambrian Lagerstätten have facilitated the exploration of many facets of this key evolutionary event. As predation was a major ecological driver behind the Explosion – particularly the radiation of biomineralising metazoans – the evidence for shell crushing (durophagy), drilling and puncturing predation in the Cambrian (and possibly the Ediacaran) is considered. Examples of durophagous predation on biomineralised taxa other than trilobites are apparently rare, reflecting predator preference, taphonomic and sampling biases, or simply lack of documentation. The oldest known example of durophagy is shell damage on the problematic taxon Mobergella holsti from the early Cambrian (possibly Terreneuvian) of Sweden. Using functional morphology to identify (or perhaps misidentify) durophagous predators is discussed, with emphasis on the toolkit used by Cambrian arthropods, specifically the radiodontan oral cone and the frontal and gnathobasic appendages of various taxa. Records of drill holes and possible puncture holes in Cambrian shells are mostly on brachiopods, but the lack of prey diversity may represent either a true biological signal or a result of various biases. The oldest drilled Cambrian shells occur in a variety of Terreneuvian‐aged taxa, but specimens of the ubiquitous Ediacaran shelly fossil Cloudina also show putative drilling traces. Knowledge on Cambrian shell drillers is sorely lacking and there is little evidence or consensus concerning the taxonomic groups that made the holes, which often leads to the suggestion of an unknown ‘soft bodied driller’. Useful methodologies for deciphering the identities and capabilities of shell drillers are outlined. Evidence for puncture holes in Cambrian shelly taxa is rare. Such holes are more jagged than drill holes and possibly made by a Cambrian ‘puncher’. The Cambrian arthropod Yohoia may have used its frontal appendages in a jack‐knifing manner, similar to Recent stomatopod crustaceans, to strike and puncture shells rapidly. Finally, Cambrian durophagous and shell‐drilling predation is considered in the context of escalation – an evolutionary process that, amongst other scenarios, involves predators (and other ‘enemies’) as the predominant agents of natural selection. The rapid increase in diversity and abundance of biomineralised shells during the early Cambrian is often attributed to escalation: enemies placed selective pressure on prey, forcing phenotypic responses in prey and, by extension, in predator groups over time. Unfortunately, few case studies illustrate long‐term patterns in shelly fossil morphologies that may reflect the influence of predation throughout the Cambrian. More studies on phenotypic change in hard‐shelled lineages are needed to convincingly illustrate escalation and the responses of prey during the Cambrian.  相似文献   

16.
《Zoologischer Anzeiger》2014,253(2):164-178
Sidneyia inexpectans Walcott, 1911 from the Cambrian Series 3 Burgess Shale of British Columbia is largely accepted as a representative of the artiopodans, an assemblage of Paleozoic arthropod taxa, including trilobites and their immediate relatives. Its appendage morphology was never fully understood, but the exopod seemed to differ from that of other artiopodans, except for the shared presence of lamellae. The head was considered to comprise only the ocular and antennular segments, these being covered entirely on the ventral side by a large doublure. This short head was often taken as an evidence for variability of head segment counts in Cambrian arthropods, and to falsify the hypothesis of a head with three postantennular segments in the euarthropod ground pattern. Restudy of a substantial amount of material of S. inexpectans shows that previous interpretations of a short head were based on taphonomically deformed specimens, where the head was either partly folded, or entirely flipped under the thorax, resulting in the dorsal shield being mistaken for an extensive doublure. Rather than an extensive doublure, there is a broad hypostome, and the head comprises ocular, antennular, and at least two postantennular appendage bearing segments. The appendage morphology is shown to be consistent with artiopodan affinities. The exopod is of the bilobate flap-like type with lamellae inserting on the proximal portion, earlier proposed as a potential autapomorphy of Artiopoda. Reinforcement of artiopodan affinities for S. inexpectans and reinterpretation of its head reconciles this species with current understanding of arthropod phylogeny and head segmentation.  相似文献   

17.
More than 4200 kg of limestone, representing 980 productive samples, from the upper Middle Cambrian, Upper Cambrian, and lowermost Ordovician in western and north-western Hunan were processed for paraconodonts, protoconodonts, and euconodonts. The focus of the present paper is on the upper Middle and lower Upper Cambrian interval as it is developed at two, apparently stratigraphically continuous, key sections. The collections studied, which include more than 20,000 specimens and are quite diverse taxonomically, prove that some protoconodonts and paraconodonts are useful biostratigraphically. Previously proposed protoconodont-paraconodont biozones in Hunan are revised and correlated with recently revised trilobite biozones, as well as with protoconodont-paraconodont and trilobite biozones in North China. Twenty-six species and seven conditionally identified species belonging to 13 genera are described. Among these, two genera ( Huayuanodontus and Yongshunella ) and two species ( Westergaardodina elegans and Yongshunella polymorpha ) are new. This study has special interest for Cambrian biostratigraphy because the two studied sections are global stratotype candidates for the Middle-Upper Cambrian series boundary. The level of the Upper-Middle Cambrian Series boundary, as currently recognized in China (at the base of the Linguagnostus reconditus Trilobite Biozone) is well marked in the paraconodont succession and can be traced into the Swedish standard succession using these fossils. By contrast, another level recently proposed as a potential global Middle-Upper Cambrian Series boundary level, the base of the Glyptagnostus reticulatus Trilobite Biozone, does not coincide with any marked change in the Hunan conodont species succession useful for local and regional correlation.  相似文献   

18.
《Palaeoworld》2019,28(3):234-242
Most of the reported Cambrian radiolarians are from middle Cambrian (Miaolingian Series, Wuliuan Stage) and onward, the radiolarians from lower Cambrian (Terreneuvian and Cambrian Series 2), on the other hand, are poorly documented, thus their morphological characteristics have not been well understood. In this study, we extracted spherical radiolarians and sponge spicules from the chert of the Cambrian Series 2 Niujiaohe Formation in southern Jiangxi Province, China. The well-preserved radiolarian fossils, identified as Paraantygopora porosa, consist of perforate plate shells pierced by dense pores with elevated rims, and display similarities to those from Lower Ordovician. Seven forms of sponge spicules are recognized, including monaxons, diaxons, tetractines, hexactines, triaxon tetractines, triaxon pentactines and irregular tetraxon tetractines, which are similar to those from the Qiongzhusian Stage in South China. Our results, combined with previously reported early Cambrian radiolarians from South China, indicate that the early Cambrian radiolarians developed advanced spherical skeletons.  相似文献   

19.
20.
Cnidarians are phylogenetically located near the base of the ‘tree of animals’, and their early evolution had a profound impact on the rise of bilaterians. However, the early diversity and phylogeny of this ‘lowly’ metazoan clade has hitherto been enigmatic. Fortunately, cnidarian fossils from the early Cambrian could provide key insights into their evolutionary history. Here, based on a scrutiny of the purported hyolith Burithes yunnanensis Hou et al. from the early Cambrian Chengjiang biota in South China, we reveal that this species shows characters distinct from those typical of hyoliths, not least a funnel-shaped gastrovascular system with a single opening, a whorl of tentacles surrounding the mouth, and the lack of an operculum. These characters suggest a great deviation from the original definition of the genus Burithes, and a closer affinity with cnidarians. We therefore reassign the material to a new genus: Palaeoconotuba. Bayesian inference of phylogeny based on new anatomical traits identifies a new clade, including Palaeoconotuba and Cambrorhytium, as a stem group of sessile medusozoan cnidarians that are united by the synapomorphies of developing an organic conical theca and a funnel-like gastrovascular system. This study unveils a stem lineage of medusozoans that evolved a lifelong conical theca in the early Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号