首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The chicken Tbx gene, Tbx18, is expressed in lateral plate mesoderm, limb, and developing somites. Here we show that Tbx18 is expressed transiently in axial mesenchyme during somite segmentation. We present evidence from overexpression and transplantation experiments that Tbx18 controls fissure formation in the late stages of somite maturation. In presumptive wing lateral plate mesoderm, ectopic Tbx18 expression leads to anterior extension of the wing bud. These results suggest that Tbx18 is involved in producing mesodermal boundaries, generating in paraxial mesoderm morphological boundaries between somites and in lateral plate mesoderm a wing- or non-wing-forming boundary.  相似文献   

5.
6.
7.
In vertebrates, the paraxial mesoderm already exhibits a complex Hox gene pattern by the time that segmentation occurs and somites are formed. The anterior boundaries of the Hox genes are always maintained at the same somite number, suggesting coordination between somite formation and Hox expression. To study this interaction, we used morpholinos to knockdown either the somitogenesis gene X-Delta-2 or the complete Hox paralogous group 1 (PG1) in Xenopus laevis. When X-Delta-2 is knocked down, Hox genes from different paralogous groups are downregulated from the beginning of their expression at gastrula stages. This effect is not via the canonical Notch pathway, as it is independent of the Notch effector Su(H). We also reveal for the first time a clear role for Hox genes in somitogenesis, as loss of PG1 gene function results in the perturbation of somite formation and downregulation of the X-Delta-2 expression in the PSM. This effect on X-Delta-2 expression is also observed during neurula stages, before the somites are formed. These results show that somitogenesis and patterning of the anteroposterior axis are closely linked via a feedback loop involving Hox genes and X-Delta-2, suggesting the existence of a coordination mechanism between somite formation and anteroposterior patterning. Such a mechanism is likely to be functional during gastrulation, before the formation of the first pair of somites, as suggested by the early X-Delta-2 regulation of the Hox genes.  相似文献   

8.
9.
We analyzed Polycomb group gene ph2alpha functionally in zebrafish embryos by a gene knock-down procedure using morpholino antisense oligos. Inhibition of ph2alpha message translation resulted in abnormal epibolic movements as well as a thick tailbud or incomplete covering of the yolk plug. At the 24hpf stage, morphants had short trunks and tails, phenotypes similar to those with disturbances in FGF signaling. Accordingly, we looked at the effects of ph2alpha expression upstream and downstream of the FGF pathway. Treatment with SU5402, an inhibitor of Fgfrs, or injection of dominant-negative Fgfr1 DNA markedly reduced ph2alpha expression in the tailbud. In addition, cells expressing mRNAs for no tail, spadetail, myoD, and papc, which are involved in FGF-related development of posterior mesoderm, were distributed abnormally. Collectively, the data argue that ph2alpha is required for epiboly and tailbud formation, acting downstream of the FGF signaling pathway.  相似文献   

10.
The paraxial mesoderm of the neck and trunk of mouse embryos undergoes extensive morphogenesis in forming somites. Paraxial mesoderm is divided into segments, it elongates along its anterior posterior axis, and its cells organize into epithelia. Experiments were performed to determine if these processes are autonomous to the mesoderm that gives rise to the somites. Presomitic mesoderm at the tailbud stage was cultured in the presence and absence of its adjacent tissues. Somite segmentation occurred in the absence of neural tube, notochord, gut and surface ectoderm, and occurred in posterior fragments in the absence of anterior presomitic mesoderm. Mesodermal expression of Dll1 and Notch1, genes with roles in segmentation, was largely independent of other tissues, consistent with autonomous segmentation. However, surface ectoderm was found to be necessary for elongation of the mesoderm along the anterior-posterior axis and for somite epithelialization. To determine if there is specificity in the interaction between ectoderm and mesoderm, ectoderm from different sources was recombined with presomitic mesoderm. Surface ectoderm from only certain parts of the embryo supported somite epithelialization and elongation. Somite epithelialization induced by ectoderm was correlated with expression of the basic-helix-loop-helix gene Paraxis in the mesoderm. This is consistent with the genetically defined requirement for Paraxis in somite epithelialization. However, trunk ectoderm was able to induce somite epithelialization in the absence of strong Paraxis expression. We conclude that somitogenesis consists of autonomous segmentation patterned by Notch signaling and nonautonomous induction of elongation and epithelialization by surface ectoderm.  相似文献   

11.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

12.
Amphioxus and vertebrates are the only deuterostomes to exhibit unequivocal somitic segmentation. The relative simplicity of the amphioxus genome makes it a favorable organism for elucidating the basic genetic network required for chordate somite development. Here we describe the developmental expression of the somite marker, AmphiTbx15/18/22, which is first expressed at the mid-gastrula stage in dorsolateral mesendoderm. At the early neurula stage, expression is detected in the first three pairs of developing somites. By the mid-neurula stage, expression is downregulated in anterior somites, and only detected in the penultimate somite primordia. In early larvae, the gene is expressed in nascent somites before they pinch off from the posterior archenteron (tail bud). Integrating functional, phylogenetic and expression data from a variety of triploblast organisms, we have reconstructed the evolutionary history of the Tbx15/18/22 subfamily. This analysis suggests that the Tbx15/18/22 gene may have played a role in patterning somites in the last common ancestor of all chordates, a role that was later conserved by its descendents following gene duplications within the vertebrate lineage. Furthermore, the comparison of expression domains within this gene subfamily reveals similarities in the genetic bases of trunk and cranial mesoderm segmentation. This lends support to the hypothesis that the vertebrate head evolved from an ancestor possessing segmented cranial mesoderm.  相似文献   

13.
14.
15.
16.
17.
The TRIM family members contain a tripartite motif (TRIM), which includes RING, B-box, and coiled-coil domains, or collectively RBCC. They have been implicated in a variety of biological processes, such as the regulation of differentiation and development, and oncogenesis. In this study, we discovered a novel function of the TRIM family in early development. We report the expression of Trim36/Haprin during Xenopus laevis early embryogenesis and its involvement in somite formation. Temporal expression analysis indicated that Trim36/Haprin was present throughout embryogenesis. Spatial expression analysis showed that its expression was mainly confined to the nervous system and a portion of the posterior somite. Morpholino-mediated knockdown of Trim36/Haprin markedly and specifically inhibited the somite formation. We conclude that Trim36/Haprin plays an important role in the arrangement of somites during their formation.  相似文献   

18.
Vertebrate segmentation: is cycling the rule?   总被引:2,自引:0,他引:2  
Vertebrate segmentation initiates with the subdivision of the paraxial mesoderm into a regular array of somites. Recent evidence suggests that the segmentation clock - a biochemical oscillator acting in the unsegmented paraxial mesoderm cells in most vertebrates - controls cyclic Notch signalling, resulting in periodic formation of somite boundaries.  相似文献   

19.
20.
Segmentation consists on the progressive formation of repetitive embryonic structures, named somites, which are formed from the most rostral part of the presomitic mesoderm. Somites are subdivided into anterior and posterior compartments and several genes are differentially expressed in either compartment. This has provided evidence for the importance of establishing the anterior-posterior polarity within each somite, which is critical for the correct segmented pattern of the adult vertebrate body. Although all somites appear morphologically similar, fate map studies have shown that the first 4 somites do not give rise to segmented structures, in contrast to more posterior ones. Moreover, in several somitogenesis-related mutants the anterior somites are not affected while posterior somites present clear defects or do not form at all. Altogether these data suggest relevant differences between rostral and caudal somites. In order to check for molecular differences between anterior and posterior somites, we have performed a detailed expression pattern analysis of several Notch signalling related genes. For the first time, we show that the somitic expression pattern profile is not the same along the anterior-posterior axis and that the differences are not observed always at the same somite level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号