首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active-site peptides of acetyl transferase, condensing enzyme and acyl carrier protein in the neighborhood of the prosthetic group, 4'-phosphopantetheine, of Cephalosporium caerulens fatty acid synthetase were investigated. The enzyme was reacted with [14C]acetyl-CoA or [14C]iodoacetamide. 14C-Labeled enzyme was digested with pepsin, trypsin or both. 14C-Labeled peptides were isolated by several purification procedures. The amino acid sequence of the active site of condensing enzyme was determined to be Tyr-Gln-Val-Glu-Ser-Cys-Pro-Ile-Leu-Glu-Gly-Lys and that of acetyl transferase was Phe-Ser-Gly-Ala-Thr-Gly-His-Ser-Gln-Gly. The amino acid composition around the 4'-phosphopantetheine-carrying serine was determined to be Asx2, Thr, Ser, Glx3, Gly2, Ala, Ile, Leu3, and Lys. When these active-site peptides were compared with those of Saccharomyces cerevisiae synthetase, a high degree of homology was observed in the active-site peptides of the acetyl transferase and acyl carrier protein domains. However, that of the condensing enzyme domain gave lower homology. These findings may support the assumption that the low reactivity of cerulenin with C. caerulens synthetase is a consequence of the structure of the condensing enzyme domain.  相似文献   

2.
The possibility that human cells contain, in addition to the cytosolic type I fatty acid synthase complex, a mitochondrial type II malonyl-CoA-dependent system for the biosynthesis of fatty acids has been examined by cloning, expressing, and characterizing two putative components. Candidate coding sequences for a malonyl-CoA:acyl carrier protein transacylase (malonyltransferase) and its acyl carrier protein substrate, identified by BLAST searches of the human sequence data base, were located on nuclear chromosomes 22 and 16, respectively. The encoded proteins localized exclusively in mitochondria only when the putative N-terminal mitochondrial targeting sequences were present as revealed by confocal microscopy of HeLa cells infected with appropriate green fluorescent protein fusion constructs. The mature, processed forms of the mitochondrial proteins were expressed in Sf9 cells and purified, the acyl carrier protein was converted to the holoform in vitro using purified human phosphopantetheinyltransferase, and the functional interaction of the two proteins was studied. Compared with the dual specificity malonyl/acetyltransferase component of the cytosolic type I fatty acid synthase, the type II mitochondrial counterpart exhibits a relatively narrow substrate specificity for both the acyl donor and acyl carrier protein acceptor. Thus, it forms a covalent acyl-enzyme complex only when incubated with malonyl-CoA and transfers exclusively malonyl moieties to the mitochondrial holoacyl carrier protein. The type II acyl carrier protein from Bacillus subtilis, but not the acyl carrier protein derived from the human cytosolic type I fatty acid synthase, can also function as an acceptor for the mitochondrial transferase. These data provide compelling evidence that human mitochondria contain a malonyl-CoA/acyl carrier protein-dependent fatty acid synthase system, distinct from the type I cytosolic fatty acid synthase, that resembles the type II system present in prokaryotes and plastids. The final products of this system, yet to be identified, may play an important role in mitochondrial function.  相似文献   

3.
Fatty acid synthase of animal tissue is a multifunctional enzyme comprised of two identical subunits, each containing seven partial activities and a site for the prosthetic group, 4'-phosphopantetheine (acyl carrier protein). We have recently isolated cDNA clones of chicken fatty acid synthase coding for the dehydratase, enoyl reductase, beta-ketoacyl reductase, acyl carrier protein, and thioesterase domains (Chirala, S.S., Kasturi, R., Pazirandeh, M., Stolow, D.T., Huang, W.Y., and Wakil, S.J. (1989) J. Biol. Chem. 264, 3750-3757). To gain insight into the structure and function of the various domains, the portion of the cDNA coding for the acyl carrier protein and thioesterase domains was expressed in Escherichia coli by using an expression vector that utilizes the phage lambda PL promoter. The recombinant protein was efficiently expressed and purified to near homogeneity using anion-exchange and hydroxyapatite chromatography. As expected from the coding capacity of the cDNA expressed, the protein has a molecular weight of 43,000 and reacts with antithioesterase antibodies. The recombinant thioesterase was found to be enzymatically active and has the same substrate specificity and kinetic properties as the native enzyme of the multifunctional synthase. Treatment of the recombinant protein with alpha-chymotrypsin results in the cleavage of the acyl carrier protein and thioesterase domain junction sequence at exactly the same site as with native fatty acid synthase. The amino acid composition of the purified recombinant protein revealed the presence of 0.6 mol of beta-alanine/mol of protein, indicating partial pantothenylation of the recombinant acyl carrier protein domain. These results indicate that the expressed protein has a conformation similar to the native enzyme and that its folding into functionally active domains is independent of the remaining domains of the multifunctional synthase subunit. These conclusions are consistent with the proposal that the multifunctional synthase gene has evolved from fusion of component genes.  相似文献   

4.
A procedure is described for the purification of the fatty acid synthetase complex (FAS) from Neurospora crassa. The enzyme complex has a molecular weight of 2.3 times 10(6), contains 6 mol of 4'-phosphopantetheine per mol, and on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate gives a single band, or a closely spaced doublet, which comigrates with standard myosin (molecular weight, 2 times 10(5)). Since the slightly retarded component in the doublet accounts for all protein-bound 4'-phosphopantetheine, the complex appears to be made up of 11 to 12 equally sized subunits, 6 of which carry the acyl carrier protein function. In this unusual arrangement, notably the lack of the low-molecular-weight acyl carrier protein component seen in other FAS systems, as well as in its enzymatic properties, the Neurospora FAS complex is quite similar to the yeast enzyme. The FAS complex of a saturated fatty acid-requiring mutant, previously disignated cel-, contains less than 2% of the 4'-phosphopantetheine prosthetic groups found in the wild-type complex. The leaky phenotype of this mutant, here designated fas-, is accounted for by a residual fatty acid synthesizing activity in its FAS complex, which is several-fold higher than expected from its residual content of 4'-phosphopanthetheine.  相似文献   

5.
A fluorescent thiol reagent, N-(7-dimethylamino-4-methylcoumarinyl) maleimide, was used to label the acyl carrier site of the bacterial fatty acid synthetase from Brevibacterium ammoniagenes. The reagent bound preferentially to the 4'-phosphopantetheine thiol group of the acyl carrier domain and irreversively inactivated the enzyme. The modified enzyme was cleaved by proteinases for the mapping of the labeled site. The fluorescent fragment was readily detected on a polyacrylamide gel after electrophoresis. The region of 45 kDa containing the 4'-phosphopantetheine was located on the polypeptide at around two-thirds of the full length from the N-terminal.  相似文献   

6.
A human beta-ketoacyl synthase implicated in a mitochondrial pathway for fatty acid synthesis has been identified, cloned, expressed, and characterized. Sequence analysis indicates that the protein is more closely related to freestanding counterparts found in prokaryotes and chloroplasts than it is to the beta-ketoacyl synthase domain of the human cytosolic fatty acid synthase. The full-length nuclear-encoded 459-residue protein includes an N-terminal sequence element of approximately 38 residues that functions as a mitochondrial targeting sequence. The enzyme can elongate acyl-chains containing 2-14 carbon atoms with malonyl moieties attached in thioester linkage to the human mitochondrial acyl carrier protein and is able to restore growth to the respiratory-deficient yeast mutant cem1 that lacks the endogenous mitochondrial beta-ketoacyl synthase and exhibits lowered lipoic acid levels. To date, four components of a putative type II mitochondrial fatty acid synthase pathway have been identified in humans: acyl carrier protein, malonyl transferase, beta-ketoacyl synthase, and enoyl reductase. The substrate specificity and complementation data for the beta-ketoacyl synthase suggest that, as in plants and fungi, in humans this pathway may play an important role in the generation of octanoyl-acyl carrier protein, the lipoic acid precursor, as well as longer chain fatty acids that are required for optimal mitochondrial function.  相似文献   

7.
4′-Phosphopantetheinyl transferases (PPTs) catalyze the transfer of 4′-phosphopantetheine (4-PP) from coenzyme A to a conserved serine residue of their protein substrates. In humans, the number of pathways utilizing the 4-PP post-translational modification is limited and may only require a single broad specificity PPT for all phosphopantetheinylation reactions. Recently, we have shown that one of the enzymes of folate metabolism, 10-formyltetrahydrofolate dehydrogenase (FDH), requires a 4-PP prosthetic group for catalysis. This moiety acts as a swinging arm to couple the activities of the two catalytic domains of FDH and allows the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. In the current study, we demonstrate that the broad specificity human PPT converts apo-FDH to holoenzyme and thus activates FDH catalysis. Silencing PPT by small interfering RNA in A549 cells prevents FDH modification, indicating the lack of alternative enzymes capable of accomplishing this transferase reaction. Interestingly, PPT-silenced cells demonstrate significantly reduced proliferation and undergo strong G1 arrest, suggesting that the enzymatic function of PPT is essential and nonredundant. Our study identifies human PPT as the FDH-modifying enzyme and supports the hypothesis that mammals utilize a single enzyme for all phosphopantetheinylation reactions.  相似文献   

8.
Modak R  Sinha S  Surolia N 《The FEBS journal》2007,274(13):3313-3326
The unfolding pathways of the two forms of Plasmodium falciparum acyl carrier protein, the apo and holo forms, were determined by guanidine hydrochloride-induced denaturation. Both the apo form and the holo form displayed a reversible two-state unfolding mechanism. The analysis of isothermal denaturation data provides values for the conformational stability of the two proteins. Although both forms have the same amino acid sequence, and they have similar secondary structures, it was found that the - DeltaG of unfolding of the holo form was lower than that of the apo form at all the temperatures at which the experiments were done. The higher stability of the holo form can be attributed to the number of favorable contacts that the 4'-phosphopantetheine group makes with the surface residues by virtue of a number of hydrogen bonds. Furthermore, there are several hydrophobic interactions with 4'-phosphopantetheine that firmly maintain the structure of the holo form. We show here for the first time that the interactions between 4'-phosphopantetheine and the polypeptide backbone of acyl carrier protein stabilize the protein. As Plasmodium acyl carrier protein has a similar secondary structure to the other acyl carrier proteins and acyl carrier protein-like domains, the detailed biophysical characterization of Plasmodium acyl carrier protein can serve as a prototype for the analysis of the conformational stability of other acyl carrier proteins.  相似文献   

9.
A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase.  相似文献   

10.
Limited trypsinization of rat fatty acid synthase monomers results in cleavage at sites protected in the native dimer. A 47,000-Da polypeptide containing the transferase component was isolated from the digest and its location in the multifunctional polypeptide established. Both acetyl and malonyl moieties are transferred stoichiometrically from CoA ester to this polypeptide and each can replace the other, confirming that a single common site is utilized in the loading of these substrates onto the fatty acid synthase. Transferase activity of the 47,000-Da polypeptide decreases with increasing acyl donor chain length (malonyl = acetyl greater than butyryl greater than hexanoyl greater than octanoyl). Activity is inhibited by certain thiol-directed reagents, and protection is afforded by substrate suggesting the presence of a sensitive cysteine residue near the substrate binding site. The transferase was also able to utilize as acyl acceptor the Escherichia coli acyl carrier protein and the acyl carrier protein domain of the multifunctional fatty acid synthase. When the fatty acid synthase monomer was trypsinized under milder conditions, the 47,000-Da transferase domain could be isolated in association with the 8,000-Da acyl carrier protein domain. The transferase was capable of translocating substrate moieties from CoA ester donors to the associated acyl carrier protein. The results provide the first direct evidence that, in the head-to-tail oriented fatty acid synthase homodimer, functional communication between the transferase domain located near the end of one polypeptide and the acyl carrier protein domain located at the opposite end of the other polypeptide is facilitated by a stable physical interaction between these domains.  相似文献   

11.
S I Chang  G G Hammes 《Biochemistry》1988,27(13):4753-4760
The amino acid sequences of three essential regions of chicken liver fatty acid synthase have been determined: that around 4'-phosphopantetheine ("carrier" site), the substrate "loading" site containing serine, and a "waiting" site for the growing fatty acid containing cysteine. The amino acid sequence of the 4'-phosphopantetheine region was determined for the acetyl-, malonyl-, hydroxybutyryl-, and butyryl-enzyme with peptides obtained by hydrolysis of the enzyme with trypsin and Staphylococcus aureus (V8) protease. The sequence region around the essential serine was obtained for the acetyl- and malonyl-enzyme. The N-terminus of the tryptic peptide was blocked. However, the same sequence is obtained for the acetyl- and malonyl-peptide after S. aureus protease digestion, suggesting that the enzyme contains a single acyl transferase rather than two separate transacylases. The sequence around the cysteine was obtained by use of a radioactive iodoacetamide label. An unusual sequence of three serines adjacent to the cysteine was found. The strong similarities between peptides from different species for all three of the regions suggest that the multifunctional polypeptides from yeast and animals have evolved from the monofunctional enzymes of lower species.  相似文献   

12.
The acyl carrier protein of citrate lyase contains adenine, phosphate, sugar, cysteamine, beta-alanine and pantoic acid in a molar ratio of 1:2:2:1:1:1. Peptides containing these components in the same stoichiometric relationship were isolated after proteolytic digestion of acyl carrier protein. All components were linked together in a single prosthetic group. This was released from the peptide by mild alkaline hydrolysis. Under these conditions a phosphodiester bond is cleaved which links the prosthetic group to a serine residue of the peptide. Incubation of the prosthetic-group-containing peptide with phosphodiesterase I yielded 4'-phosphopantetheine and adenylic acid. The 5'-AMP was not free but was substituted by presumably an acidic sugar residue, which was released by mild acid hydrolysis yielding free 5'-AMP. It was concluded from these results that the prosthetic group of citrate lyase acyl carrier protein consists of a substituted isomeric dephospho-CoA. This is bound to the protein by the 5'-phosphate group of adenylic acid. The 4'-phosphopantetheine residue is bound by a phosphodiester linkage to the 2' or 3' position of ribose and the remaining hydroxyl group of ribose is substituted with presumably an acidic sugar residue. The structural similarities of this prothetic group and coenzyme A are discussed and related to the catalytic properties of citrate lyase.  相似文献   

13.
Escherichia coli mutants [coaA16(Fr); Fr indicates feedback resistance] were isolated which possessed a pantothenate kinase activity that was refractory to feedback inhibition by coenzyme A (CoA). Strains harboring this mutation had CoA levels that were significantly elevated compared with strains containing the wild-type kinase and also overproduced both intra- and extracellular 4'-phosphopantetheine. The origin of 4'-phosphopantetheine was investigated by using strain SJ135 [panD delta(aroP-aceEF)], in which synthesis of acetyl-CoA was dependent on the addition of an acetate growth supplement. Rapid degradation of CoA to 4'-phosphopantetheine was triggered by the conversion of acetyl-CoA to CoA following the removal of acetate from the media. CoA hydrolysis under these conditions appeared not to involve acyl carrier protein prosthetic group turnover since [acyl carrier protein] phosphodiesterase was inhibited equally well by acetyl-CoA or CoA. These data support the view that the total cellular CoA content is controlled by modulation of biosynthesis at the pantothenate kinase step and by degradation of CoA to 4'-phosphopantetheine.  相似文献   

14.
Acyl carrier protein is an essential cofactor in fatty acid biosynthesis, and in contrast to the stability of the protein moiety during growth, its 4'-phosphopantetheine prosthetic group is metabolically active. The biosynthetic incorporation of deuterium into nonexchangeable positions of acyl carrier protein was found to enhance the sensitivity of the protein to pH-induced hydrodynamic expansion. This constitutional isotope effect was exploited to separate deuterated from normal acyl carrier protein by conformationally sensitive gel electrophoresis, thus providing the analytical framework for separating pre-existing (deuterated) from newly synthesized acyl carrier protein in pulse-chase experiments. The rate of acyl carrier protein prosthetic group turnover was found to depend on the intracellular concentration of coenzyme A. At low coenzyme A levels, prosthetic group turnover was four times faster than the rate of new acyl carrier protein biosynthesis but at the higher coenzyme A concentrations characteristic of logarithmic growth, turnover was an order of magnitude slower, amounting to approximately 25% of the acyl carrier protein pool per generation. These observations suggest that the acyl carrier protein prosthetic group turnover cycle may be related to coenzyme A metabolism rather than to lipid biosynthesis.  相似文献   

15.
The peptide part of CoA, 4'-phosphopantetheine, has been identified as an essential cofactor in in the biosynthesis of fatty acids, polyketides, depsipeptides, peptides, and compounds derived from both carboxylic and amino acid precursors, like rapamycin. The cofactor is attached to a unique protein moiety, referred to as acyl carrier protein, aminoacyl carrier protein, or peptidyl carrier protein. These carrier proteins are either associated to enzyme complexes (type II) or integrated within multifunctional polypeptide chains (type I). The cofactor is added in a post-translational modification reaction by highly specific transferases, acting on CoA. The functions of carrier proteins in directed condensation reactions are: (1) the selection of substrates to be attached as thioesters, (2) the stabilization of intermediates, (3) the presentation of intermediates for modification by associated enzyme activities, (4) facilitation of the directed condensation reactions of two adjacent intermediates, and (5) assistance in the termination reaction(s) leading to product release.  相似文献   

16.
Fatty acid synthetase was covalently labelled with [14C]palmitic acid from [14C]palmityl-CoA. Tryptic and peptic digestion of the [14C]palmityl enzyme resulted in the formation of radioactive palmityl peptides carrying the long-chain acyl residue both in oxygen-ester and thio-ester linkage. The lipophilic palmityl peptides were purified by column and thin-layer chromatography using organic lolvent systems. Peptides arising from the acyl carrier protein, the condensing enzyme and the palmityl transferase were identified and characterized. The amino acid sequence of a 4'-phosphopant-etheine-containing peptide was established. It comprises 13 residues and shows a high degree of homology with the acyl carrier protein from Escherichia coli. A heptapeptide and an octapeptide from the palmityl transferase active site were partially sequenced. The identical amino acid composition of palmityl transferase and malonyl transferase core peptides is briefly discussed.  相似文献   

17.
Myxothiazol is synthesized by the myxobacterium Stigmatella aurantiaca DW4/3-1 via a combined polyketide synthase/polypeptide synthetase. The biosynthesis of this secondary metabolite is also dependent on the gene product of mtaA. The deduced amino acid sequence of mtaA shows similarity to 4'-phosphopantetheinyl transferases (4'-PP transferase). This points to an enzyme activity that converts inactive forms of the acyl carrier protein domains of polyketide synthetases (PKSs) and/or the peptidyl carrier protein domains of nonribosomal polypeptide synthetases (NRPSs) of the myxothiazol synthetase complex to their corresponding holo-forms. Heterologous co-expression of MtaA with an acyl carrier protein domain of the myxothiazol synthetase was performed in Escherichia coli. The proposed function as a 4'-PP transferase was confirmed and emphasizes the significance of MtaA for the formation of a catalytically active myxothiazol synthetase complex. Additionally, it is shown that MtaA has a relaxed substrate specificity: it processes an aryl carrier protein domain derived from the enterobactin synthetase of E. coli (ArCP) as well as a peptidyl carrier protein domain from a polypeptide synthetase of yet unknown function from Sorangium cellulosum. Therefore, MtaA should be a useful tool for activating heterologously expressed PKS and NRPS systems.  相似文献   

18.
The C-terminal region of a multifunctional polypeptide from the 6-deoxyerythronolide B synthase of Saccharopolyspora erythraea is predicted to contain an acyl carrier protein and a thioesterase or acyltransferase activity [Cortes, J., Haydock, S. F., Roberts, G. A., Bevitt, D. J. & Leadlay, P. F. (1990) Nature 348, 176-178]. Site-directed mutagenesis by means of the polymerase chain reaction was used to construct an efficient pT7-based expression plasmid for this domain. The recently developed technique of electrospray mass spectrometry was used to demonstrate that the purified protein had not been post-translationally modified by attachment of a 4'-phosphopantetheine group. However, treatment with the serine proteinase inhibitor phenylmethylsulphonyl fluoride led to highly selective labelling of the predicted active site of the thioesterase or acyltransferase.  相似文献   

19.
Plant holo-(acyl carrier protein) synthase.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. An improved method was developed for the assay of plant holo-(acyl carrier protein) synthase activity, using Escherichia coli acyl-(acyl carrier protein) synthetase as a coupling enzyme. 2. Holo-(acyl carrier protein) synthase was partially purified from spinach (Spinacia oleracea) leaves by a combination of (NH4)2SO4 fractionation and anion-exchange and gel-permeation chromatography. 3. The partially purified enzyme had a pH optimum of 8.2 and Km values of 2 microM, 72 microM and 3 mM for apo-(acyl carrier protein), CoA and Mg2+ respectively. Synthase activity was inhibited in vitro by the reaction product 3',5'-ADP. 4. Results from the fractionation of spinach leaf and developing castor-oil-seed (Ricinus communis) endosperm cells were consistent with a cytosolic localization of holo-(acyl carrier protein) synthase activity in plant cells.  相似文献   

20.
4'-Phosphopantetheine transferases (PPTases) transfer the 4'-phosphopantetheine moiety of coenzyme A onto a conserved serine residue of acyl carrier proteins (ACPs) of fatty acid and polyketide synthases as well as peptidyl carrier proteins (PCPs) of nonribosomal peptide synthetases. This posttranslational modification converts ACPs and PCPs from their inactive apo into the active holo form. We have investigated the 4'-phosphopantetheinylation reaction in Bacillus subtilis, an organism containing in total 43 ACPs and PCPs but only two PPTases, the acyl carrier protein synthase AcpS of primary metabolism and Sfp, a PPTase of secondary metabolism associated with the nonribosomal peptide synthetase for the peptide antibiotic surfactin. We identified and cloned ydcB encoding AcpS from B. subtilis, which complemented an Escherichia coli acps disruption mutant. B. subtilis AcpS and its substrate ACP were biochemically characterized. AcpS also modified the d-alanyl carrier protein but failed to recognize PCP and an acyl carrier protein of secondary metabolism discovered in this study, designated AcpK, that was not identified by the Bacillus genome project. On the other hand, Sfp was able to modify in vitro all acyl carrier proteins tested. We thereby extend the reported broad specificity of this enzyme to the homologous ACP. This in vitro cross-interaction between primary and secondary metabolism was confirmed under physiological in vivo conditions by the construction of a ydcB deletion in a B. subtilis sfp(+) strain. The genes coding for Sfp and its homolog Gsp from Bacillus brevis could also complement the E. coli acps disruption. These results call into question the essential role of AcpS in strains that contain a Sfp-like PPTase and consequently the suitability of AcpS as a microbial target in such strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号