首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quadrupedal animals moving on arboreal substrates face unique challenges to maintain stability. The torque generated by the limbs around the long axis of a branch during locomotion may clarify how the animals remain stable on arboreal supports. We sought to determine what strategy gray short-tailed opossums (Monodelphis domestica) use to exert torque and avoid toppling. The opossums moved across a branch trackway about half the diameter of their bodies. Part of the trackway was instrumented to measure substrate reaction forces and torque around the long axis of the branch. Kinematic analysis was used to estimate the center of pressure of the manus and pes; from center of pressure and vertical and mediolateral forces, the torque generated by substrate reaction forces versus muscular effort could be determined. Forelimbs generated significantly greater torque than hindlimbs, which is probably explained by the greater weight-bearing role of the forelimbs. Fore- and hindlimbs generated torque in opposite directions because contralateral fore- and hindlimbs typically contacted the branch. Torque generated by muscular effort, however, was often in the same direction in both fore- and hindlimbs. The muscle-generated torque is likely the result of mediolateral movement of the center of mass caused by mediolateral undulation of the torso. These results bear an important implication for the study of arboreal locomotion: center of mass dynamics are at least as important as static positions. M. domestica is a good representative for a primitive mammal, and comparisons with arboreal specialists will shed light on how proficient arboreal locomotion evolved.  相似文献   

2.
It is often claimed that the walking gaits of primates are unusual because, unlike most other mammals, primates appear to have higher vertical peak ground reaction forces on their hindlimbs than on their forelimbs. Many researchers have argued that this pattern of ground reaction force distribution is part of a general adaptation to arboreal locomotion. This argument is frequently used to support models of primate locomotor evolution. Unfortunately, little is known about the force distribution patterns of primates walking on arboreal supports, nor do we completely understand the mechanisms that regulate weight distribution in primates. We collected vertical peak force data for seven species of primates walking quadrupedally on instrumented terrestrial and arboreal supports. Our results show that, when walking on arboreal vs. terrestrial substrates, primates generally have lower vertical peak forces on both limbs but the difference is most extreme for the forelimb. We found that force reduction occurs primarily by decreasing forelimb and, to a lesser extent, hindlimb stiffness. As a result, on arboreal supports, primates experience significantly greater functional differentiation of the forelimb and hindlimb than on the ground. These data support long-standing theories that arboreal locomotion was a critical factor in the differentiation of the forelimbs and hindlimbs in primates. This change in functional role of the forelimb may have played a critical role in the origin of primates and facilitated the evolution of more specialized locomotor behaviors.  相似文献   

3.
New discoveries on the ichnological site known as “the Pterosaur Beach of Crayssac” (lower Tithonian, Upper Jurassic; south-western France) answer the question of terrestrial capabilities of non-pterodactyloid pterosaurs. If the terrestrial type of locomotion of pterodactyloid pterosaurs has been solved from ichnological evidence for more than twenty years, no tracks and trackways referable to non-pterodactyloid pterosaurs have ever been described. Thus, the debate on terrestrial capabilities of these non-pterodactyloids was based on morpho-functional studies, with the main conclusion that those pterosaurs were arboreal dwellers and bad walkers. Six trackways referable to three non-pterodactyloid new ichnotaxa, maybe closely related to Rhamphorhynchidae, are described in this work. Their study leads to the conclusion that grounded non-pterodatyloids, at least during the Late Jurassic, were quadrupedal with digitigrade manus and plantigrade to digitigrade pes. They were clearly good walkers, even if hindlimbs are supposed to be hampered by the uropatagium, what could have constrained the terrestrial agility of these animals. Thus, from ichnological evidence and contrary to the current hypotheses, non-pterodactyloid pterosaurs seem to have been good walkers even though their trackways are very rare or unidentified to date. This rarity could be due to behaviour rather than to functional capacities, many non-pterodactyloids being considered both littoral fishers and arboreal or cliff dwellers. However, the concept of non-pterodactyloid “good climbers and bad walkers” has to be modified to “good climbers and rare walkers”, unless many non-pterodactyloid ichnites have yet to be discovered.  相似文献   

4.
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches. However, the functional significance of DS gait remains largely hypothetical. The study presented here tests hypotheses about the functional significance of DS gait by analyzing the gait mechanics of a primate that alternates between DS and lateral sequence (LS) gaits, Cebus apella. Kinematic and kinetic data were gathered from two subjects as they moved across both terrestrial and simulated arboreal substrates. These data were used to test four hypotheses: (1) locomotion on arboreal supports is associated with increased use of DS gait, (2) DS gait is associated with lower peak vertical substrate reaction forces than LS gait, (3) DS gait is associated with greater forelimb/hind limb differentiation in force magnitudes, and (4) DS gait offers increased stability. Our results indicate that animals preferred DS gait on the arboreal substrate, and LS gait while on the ground. Peak vertical substrate reaction forces showed a tendency to be lower in DS gait, but not consistently so. Pole ("arboreal") forces were lower than ground forces in DS gait, but not in LS gait. The preferred symmetrical gait on both substrates was a grounded run or amble, with the body supported by only one limb throughout most of the stride. During periods of bilateral support, the DS gait had predominantly diagonal support couplets. This benefit for stability on an arboreal substrate is potentially outweighed by overstriding, its associated ipsilateral limb interference in DS gait and hind foot positioning in front of the hand on untested territory. DS gait also did not result in an optimal anchoring position of the hind foot under the center of mass of the body at forelimb touchdown. In sum, the results are mixed regarding the superiority of DS gait in an arboreal setting. Consequently, the notion that DS gait is an ancestral adaptation of primates, conditioned by the selection demands of an arboreal environment, remains largely hypothetical.  相似文献   

5.
The quadrupedal walking gaits of most primates can be distinguished from those of most other mammals by the presence of diagonal-sequence (DS) footfall patterns and higher peak vertical forces on the hindlimbs compared to the forelimbs. The walking gait of the woolly opossum (Caluromys philander), a highly arboreal marsupial, is also characterized by diagonal-sequence footfalls and relatively low peak forelimb forces. Among primates, three species--Callithrix, Nycticebus, and Loris--have been reported to frequently use lateral-sequence (LS) gaits and experience relatively higher peak vertical forces on the forelimbs. These patterns among primates and other mammals suggest a strong association between footfall patterns and force distribution on the limbs. However, current data for lorises are limited and the frequency of DS vs. LS walking gaits in Loris is still ambiguous. To test the hypothesis that patterns of footfalls and force distribution on the limbs are functionally linked, kinematic and kinetic data were collected simultaneously for three adult slender lorises (Loris tardigradus) walking on a 1.25 cm horizontal pole. All subjects in this study consistently used diagonal-sequence walking gaits and always had higher peak vertical forces on their forelimbs relative to their hindlimbs. These results call into question the hypothesis that a functional link exists between the presence of diagonal-sequence walking gaits and relatively higher peak vertical forces on the hindlimbs. In addition, this study tested models that explain patterns of force distribution based on limb protraction angle or limb compliance. None of the Loris subjects examined showed kinematic patterns that would support current models proposing that weight distribution can be adjusted by actively shifting weight posteriorly or by changing limb stiffness. These data reveal the complexity of adaptations to arboreal locomotion in primates and indicate that diagonal-sequence walking gaits and relatively low forelimb forces could have evolved independently.  相似文献   

6.
Kinematic and coordination variables were studied in two carnivorans, one with known locomotor capabilities in arboreal substrates (cat), and the other a completely terrestrial species (dog). Two horizontal substrates were used: a flat trackway on the ground (overground locomotion) and an elevated and narrow runway (narrow-support locomotion). Despite their different degree of familiarity with the ‘arboreal’ situation, both species developed a strategy to adapt to narrow supports. The strategy of cats was based on using slower speeds, coupled with modifications to swing phase duration, to keep balance on narrow supports. The strategy of dogs relied on high speeds to gain in dynamic stability, and they increased cycle frequency by reducing swing phase duration. Furthermore, dogs showed a high variability in limb coordination, although a tendency to canter-like coordination was observed, and also avoided whole-body aerial phases. In different ways, both strategies suggested a reduction of peak vertical forces, and hence a reduction of the vertical oscillations of the centre of mass. Finally, lateral oscillation was reduced by the use of a crouched posture.  相似文献   

7.
Aspects of gait mechanics of two lemurid species were explored experimentally. Substrate reaction forces were recorded for three animals each of L. catta and E. fulvus walking and running at voluntary speeds either on a wooden runway with an integrated force platform or on elevated pole supports with a section attached to the force platform. The average height of the back over these substrates and fluctuations in this height were evaluated using video-analysis. Animals preferred walking gaits and lower speeds on the poles, and gallops and higher speeds on the ground. At overlapping speeds, few adjustments to substrate types were identified. Hind limb peak forces are usually lower on the poles than on the ground, and the caudal back is closer to the substrate. This suggests that greater hind limb flexion and reduced limb stiffness occurred on the poles. The support phases for both limbs at higher speeds are slightly elongated on the poles. Forelimb peak forces are not lower, and the trajectory of the caudal back does not follow a smoother path, i.e., not all elements of a compliant gait are present on the simulated arboreal substrates. The horizontal, rigid poles, offered as substitutes for branchlike supports in the natural habitat, may not pose enough of a challenge to require more substantial gait adjustments. Across substrates, forelimb peak forces are generally lower than hind limb peak forces. The interlimb force distribution is similar to that of most other primates with more even limb lengths. Walking gaits present a greater divergence in fore- and hind limb forces than galloping gaits, which are associated with higher forces. The more arboreal E. fulvus has higher forelimb forces than the more terrestrial L. catta, unlike some anthropoid species in which the arborealists have lower forelimb forces than the terrestrialists. As in other primate and nonprimate quadrupeds, the major propulsive thrust comes from the hind limbs in both lemurs. While our data confirm certain aspects of primate gait mechanics (e.g., generally higher hind limb forces), they do not fully support the notion of greater limb compliance. Neither a compliant forelimb on branchlike supports, nor a negative correlation of forelimb force magnitudes with degree of arboreality were observed. Increasing forelimb-to-hind-limb-force-ratios with increasing speed and force magnitudes are also not expected under this paradigm.  相似文献   

8.
When animals travel on tree branches, avoiding falls is of paramount importance. Animals swiftly running on a narrow branch must rely on movement to create stability rather than on static methods. We examined how Siberian chipmunks (Tamias sibiricus) remain stable while running on a narrow tree branch trackway. We examined the pitch, yaw, and rolling torques around the center of mass, and hypothesized that within a stride, any angular impulse (torque during step time) acting on the center of mass would be canceled out by an equal and opposite angular impulse. Three chipmunks were videotaped while running on a 2 cm diameter branch trackway. We digitized the videos to estimate center of mass and center of pressure positions throughout the stride. A short region of the trackway was instrumented to measure components of the substrate reaction force. We found that positive and negative pitch angular impulse was by far the greatest in magnitude. The anterior body was pushed dorsally (upward) when the forelimbs landed simultaneously, and then the body pitched in the opposite direction as both hindlimbs simultaneously made contact. There was no considerable difference between yaw and rolling angular impulses, both of which were small and equal between fore- and hindlimbs. Net angular impulses around all three axes were usually greater than or less than zero (not balanced). We conclude that the chipmunks may balance out the torques acting on the center of mass over the course of two or more strides, rather than one stride as we hypothesized.  相似文献   

9.
Primate appendicular limb bones were measured on the cross-sectional geometry at the mid-length of the humerus and femur and on the external dimensions of long bones of the same individuals. Cross sections were directly measured by means of computer tomography or direct sectioning. The morphometry of bones and locomotor behaviour is discussed from the viewpoint of the functional differentiation between the fore- and hindlimbs. The primate group which daily adopted a relatively terrestrial locomotor type demonstrates robust forelimb bones compared with the group which adopted a fully arboreal locomotor type. In contrast, the arboreal group showed relatively large and long hindlimb bones. The difference resembled the previously reported comparison between terrestrial and arboreal groups among wholly quadrupedal mammals. Humans were more similar to the arboreal group than to the terrestrial group. Parameters of the cross-sectional geometry showed a slightly positive allometry in total primate species. Slopes of the parameters were explained by the influence of muscle force.  相似文献   

10.
The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post‐cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi‐aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein‐Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi‐aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi‐aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions.  相似文献   

11.
Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate (“terrestrial”), on an elevated pole (“arboreal”), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. “Arboreal” locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than “terrestrial” locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Castanera, D., Pascual, C., Canudo, J.I., Hernández, N. & Barco, J., 2012: Ethological variations in gauge in sauropod trackways from the Berriasian of Spain. Lethaia, Vol. 45, pp. 476–489. Two sauropod trackways from the Early Cretaceous (Berriasian) of the Cameros Basin (Spain) show important variations in trackway gauge, along the same trackway. These variations seem to be associated with different behaviours; on the one hand with a significant variation in the direction of travel (turning phenomena) and on the other hand with a decrease in speed, probably associated with the properties of the substrate. These variations in sauropod trackways provide the trackway gauge debate with new data, supporting the hypothesis that the walking style and substrate properties may in some cases determine this sauropod character. The study of turning sauropod trackways improves our knowledge of sauropod locomotion. □Ethology, intermediate‐gauge, sauropod trackways, substrate properties, wide‐gauge.  相似文献   

13.
《Zoology (Jena, Germany)》2014,117(2):146-159
To gain new insights into running gaits on sloped terrestrial substrates, metric and selected kinematic parameters of the common degu (Octodon degus) were examined. Individuals were filmed at their maximum voluntary running speed using a high-speed camera placed laterally to the terrestrial substrate varying in orientations from −30° to +30°, at 10° increments. Degus used trotting, lateral-sequence (LS) and diagonal-sequence (DS) running gaits at all substrate orientations. Trotting was observed across the whole speed range whereas DS running gaits occurred at significantly higher speeds than LS running gaits. Metric and kinematic changes on sloped substrates in degus paralleled those noted for most other mammals. However, the timing of metric and kinematic locomotor adjustments differed significantly between individual degus. In addition, most of these adjustments took place at 10° rather than 30° inclines and declines, indicating significant biomechanical demands even on slightly sloped terrestrial substrates. The results of this study suggest that DS and LS running gaits may represent an advantage in small to medium-sized mammals for counteracting some level of locomotor instability. Finally, changes in locomotor parameters of the forelimbs rather than the hindlimbs seem to play an important role in gait selection in small to medium-sized mammals.  相似文献   

14.
The origin of manus-only and manus dominated sauropod trackways has been a matter of intense debate since two hyphothesis exist: (a) manus-only and manus-dominated trackways result from a 'swimming' sauropod, and (b) they result from a selective underprint phenomenon that only leaves the manus recorded. Several new sauropod trackways are reported in the Fumanya tracksite area (Maastrichtian), in SE Pyrenees, where both tracks and undertracks are found on the same stratigraphic bedding surface. In one of the trackways, footprint morphology together with the trackway pattern displays a clear succession of manus-only impressions attributed to a sauropod dinosaur in a walking gait. The ichnological comparison between the manus-only trackway with the other complete trackway (manus-pes) display an identical distribution of the manus pattern. This fact clearly points towards an underprint phenomenon as the origin for manus-only trackways, since it is rather unlikely that the same pattern would completely match different locomotion behaviours such as walking and swimming. Therefore, we suggest an interpretation based on the differential loading between the hindfoot and the forefoot on an upper stratigraphic track-level, for the studied manus-only trackway. □ Fumanya tracksite, manus-only trackways, titanosaurs, trackway pattern, underprint, Upper Cretaceous.  相似文献   

15.
The locomotion of primates differs from that of other mammals in three fundamental ways. During quadrupedal walking, primates use diagonal sequence gaits, protract their arms more at forelimb touchdown, and experience lower vertical substrate reaction forces on their forelimbs relative to their hindlimbs. It is widely held that the unusual walking gaits of primates represent a basal adaptation for movement on thin, flexible branches and reflect a major change in the functional role of the forelimb. However, little data on nonprimate arboreal mammals exist to test this notion. To that end, we examined the gait mechanics of the woolly opossum (Caluromys philander), a marsupial convergent with small-bodied prosimians in ecology, behavior, and morphology. Data on the footfall sequence, relative arm protraction, and peak vertical substrate reaction forces were obtained from videotapes and force records for three adult woolly opossums walking quadrupedally on a wooden runway and a thin pole. For all steps recorded on both substrates, woolly opossums always used diagonal sequence walking gaits, protracted their arms beyond 90 degrees relative to horizontal body axis, and experienced peak vertical substrate reaction forces on forelimbs that were significantly lower than on hindlimbs. The woolly opossum is the first nonprimate mammal to show locomotor mechanics that are identical to those of primates. This case of convergence between primates and a committed fine-branch, arboreal marsupial strongly implies that the earliest primates evolved gait specializations for fine-branch locomotion, which reflect important changes in forelimb function.  相似文献   

16.
Ground reaction forces were recorded for jumps of three individuals each of Lemur catta and Eulemur fulvus. Animals jumped back and forth between a ground-mounted force plate and a 0.5-m elevated platform, covering horizontal distances of 0.5-2 m. In total, 190 takeoffs and 263 landings were collected. Animals typically jumped from a run up and into a run out, during which they gained or into which they carried horizontal impulse. Correspondingly, vertical impulses dominated takeoffs and landings. Peak forces were moderate in magnitude and not much higher than forces reported for quadrupedal gaits. This is in contrast to the forces for standing jumps of specialized leapers that considerably exceed forces associated with quadrupedal gaits. Force magnitudes for the lemur jumps are more comparable to peak forces reported for other quadrupeds performing running jumps. Takeoffs are characterized by higher hindlimb than forelimb peak forces and impulses. L. catta typically landed with the hindlimbs making first contact, and the hindlimb forces and impulses were higher than the forelimb forces and impulses at landing. E. fulvus typically landed with the forelimbs striking first and also bearing the higher forces. This pattern does not fully conform to the paradigm of primate limb force distribution, with higher hindlimb than forelimb forces. However, the absolute highest forces in E. fulvus also occur at the hindlimbs, during acceleration for takeoff.  相似文献   

17.
Joint surfaces of limb bones are loaded in compression by reaction forces generated from body weight and musculotendon complexes bridging them. In general, joints of eutherian mammals have regions of high radiodensity subchondral bone that are better at resisting compressive forces than low radiodensity subchondral bone. Identifying similar form-function relationships between subchondral radiodensity distribution and joint load distribution within the marsupial postcranium, in addition to providing a richer understanding of marsupial functional morphology, can serve as a phylogenetic control in evaluating analogous relationships within eutherian mammals. Where commonalities are established across phylogenetic borders, unifying principles in mammalian physiology, morphology, and behavior can be identified. Here, we assess subchondral radiodensity patterns in distal tibiae of several marsupial taxa characterized by different habitual activities (e.g., locomotion). Computed tomography scanning, maximum intensity projection maps, and pixel counting were used to quantify radiodensity in 41 distal tibiae of bipedal (5 species), arboreal quadrupedal (4 species), and terrestrial quadrupedal (5 species) marsupials. Bipeds (Macropus and Wallabia) exhibit more expansive areas of high radiodensity in the distal tibia than arboreal (Dendrolagus, Phascolarctos, and Trichosurus) or terrestrial quadrupeds (Sarcophilus, Thylacinus, Lasiorhinus, and Vombatus), which may reflect the former carrying body weight only through the hind limbs. Arboreal quadrupeds exhibit smallest areas of high radiodensity, though they differ non-significantly from terrestrial quadrupeds. This could indicate slightly more compliant gaits by arboreal quadrupeds compared to terrestrial quadrupeds. The observed radiodensity patterns in marsupial tibiae, though their statistical differences disappear when controlling for phylogeny, corroborate previously documented patterns in primates and xenarthrans, potentially reflecting inferred limb use during habitual activities such as locomotion. Despite the complex nature of factors contributing to joint loads, broad observance of these patterns across joints and across a variety of taxa suggests that subchondral radiodensity can be used as a unifying form-function principle within Mammalia.  相似文献   

18.
M. Romano  M. A. Whyte  S. J. Jackson 《Ichnos》2013,20(3-4):257-270
A new parameter, the Trackway Ratio (TR), is proposed to supplement the previously used trackway gauge to describe and quantify the relative width of trackways in dinosaur quadrupedal gaits. It is expressed as the ratio of the width of the tracks relative to the total width of the trackway (both measured perpendicular to the long axis of the trackway). The ratio may be used with either pes (PTR) or manus (MTR) tracks. The PTR range of values for wide-, medium- and narrow-gauge trackways of previous authors are provisionally suggested to be ≤35%, 36–49% and ≥50%, respectively. The application of such a ratio would permit a more consistent ichnotaxonomy to be adopted where both track morphology and trackway parameters are used to define ichnotaxa.

Determination of the TR, as well as other parameters, will be affected by track preservation quality. Recent experiments on track simulation in the laboratory have shed further light on observations made in the field concerning the value of track measurements (in particular track length and width) recorded from below the surface on which the maker was moving. Experimental track simulations in the laboratory have shown that the dimensions of transmitted tracks preserved below the surface on which the foot was impressed may vary from 65% to 135% of the true dimensions of the indenter. Two case studies are presented that quantify the errors that may be made on calculating TR and the size, gait and speed of the maker, from trackways if the preservation of the tracks are not fully understood.

It is shown that in individual trackways the PTR may vary along the length of the trackway; so that part of the trackway may be classified as wide-gauge and other parts medium-gauge. There is a relationship between variation in PTR and that of pace angulation along the length of a single trackway. An analysis of 42 trackways, principally sauropod, shows a temporal distribution that does not agree closely with previous suggestions relating to narrow- and wide-gauge trackways.  相似文献   

19.
In conserving regional insect diversity dispersal corridors are advocated to counteract fragmentation and for resilience to climate change. However, influences of corridor design and management on their function are poorly understood. Effects of contrasting matrix structure on the suitability and function of trackways as corridors for dispersal of an arenicolous carabid beetle, Harpalus rufipalpis (Sturm), was studied within a plantation landscape using mark-release-recapture. A total of 1,120 marked H. rufipalpis were released into four trackways: two “open” trackways surrounded by pine plantations aged 13–16 years and two “shaded” trackways surrounded by plantations aged 26–37 years. Dispersal was monitored by a grid of pitfall transects placed across trackways at intervals of four meters, extending 44 m north and south of the release point. Numbers of resident and marked recaptured H. rufipalpis, their average daily movement rates and numbers of recaptures in the north and south direction were compared between open and shaded trackways using 238 recaptures. The surrounding matrix affected trackway suitability with greater abundance of resident beetles found in open trackways; however H. rufipalpis was also naturally present in shaded trackways. H. rufipalpis were more active in low quality shaded corridors as inferred from the greater number of recaptures and from greater daily movement rates. Corridor edge permeability differed between trackway types, with more individuals leaving the corridor to enter the matrix in the less suitable shaded trackways. Thus matrix type affected the potential habitat suitability and conduit function of trackway corridors.  相似文献   

20.
Understanding how selective forces influence patterns of symmetry remains an active area of research in evolutionary biology. One hypothesis, which has received relatively little attention, suggests that the functional importance of morphological characters may influence patterns of symmetry. Specifically, it posits that for structures that display bilateral symmetry, those with greater functional importance should display lower levels of asymmetry. The aim of this study was to examine the patterns of fluctuating asymmetry (FA) present in the limb bones of freshwater turtles in the family Emydidae. Aquatic emydid turtles of the subfamily Deirochelyinae employ a hindlimb-dominant swimming style, suggesting that hindlimbs should display lower levels of FA. Consistent with the morpho-functional hypothesis of symmetry, we found a strong, clade-wise pattern of humeral-biased FA in aquatic Deirochelyinae. In contrast, some emydids of the subfamily Emydinae possess more terrestrial tendencies. As terrestrial locomotion places more equal importance on fore- and hindlimbs, we predicted that such behaviors may minimize differences in FA. No clade-wise pattern was detected in the subfamily Emydinae. We also detected a phylogenetic signal in FA within the femur and discovered that FA has evolved at vastly different rates between the fore- and hindlimbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号