首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Listeria monocytogenes is a significant food-borne pathogen that is capable of adhering to and producing biofilms on processing equipment, making it difficult to eliminate from meat-processing environments and allowing potential contamination of ready-to-eat (RTE) products. We devised a fluorescence-based microplate method for screening isolates of L. monocytogenes for the ability to adhere to abiotic surfaces. Strains of L. monocytogenes were incubated for 2 days at 30 degrees C in 96-well microplates, and the plates were washed in a plate washer. The retained cells were incubated for 15 min at 25 degrees C with 5,6-carboxyfluorescein diacetate and washed again, and then the fluorescence was read with a plate reader. Several enzymatic treatments (protease, lipase, and cellulase) were effective in releasing adherent cells from the microplates, and this process was used for quantitation on microbiological media. Strongly adherent strains of L. monocytogenes were identified that had 15,000-fold-higher levels of fluorescence and 100,000-fold-higher plate counts in attachment assays than weakly adherent strains. Strongly adherent strains of L. monocytogenes adhered equally well to four different substrates (glass, plastic, rubber, and stainless steel); showed high-level attachment on microplates at 10, 20, 30, and 40 degrees C; and showed significant differences from weakly adherent strains when examined by scanning electron microscopy. A greater incidence of strong adherence was observed for strains isolated from RTE meats than for those isolated from environmental surfaces. Analysis of surface adherence among Listeria isolates from processing environments may provide a better understanding of the molecular mechanisms involved in attachment and suggest solutions to eliminate them from food-processing environments.  相似文献   

2.
Aims:  To determine whether isolates of Listeria monocytogenes differ in their ability to adsorb and form biofilms on a food-grade stainless steel surface.
Methods and Results:  Strains were assessed for their ability to adsorb to a test surface over a short time period. Although some differences in numbers of bound cells were found among the strains, there were no correlations between the degree of adsorption and either the serotype or source of the strain. The ability of each strain to form a biofilm when grown with the test surface was also assessed. With the exception of a single strain, all strains adhered as single cells and did not form biofilms. Significant differences in adherence levels were found among strains. Strains demonstrating enhanced attachment produced extracellular fibrils, whereas those which adhered poorly did not. A single strain formed a biofilm consisting of adhered single cells and aggregates of cells.
Conclusions:  Significant differences were found in the ability of various L. monocytogenes strains to attach to a test surface. In monoculture, the majority of strains did not form biofilms.
Significance and Impact of the Study:  Differences in attachment and biofilm formation among strains provide a basis to study these characteristics in L. monocytogenes .  相似文献   

3.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

4.
This study investigated the physicochemical forces involving the adhesion of Listeria monocytogenes to surfaces. A total of 22 strains of L. monocytogenes were compared for relative surface hydrophobicity with the salt aggregation test. Cell surface charges and hydrophobicity of L. monocytogenes Scott A were also determined by electrophoretic mobility, hydrophobic-interaction chromatography, and contact angle measurements. Electrokinetic measurements indicated that the strain Scott A has a negative electrophoretic mobility. Physicochemical characterization of L. monocytogenes by various methods indicates that this microorganism is hydrophilic. All L. monocytogenes strains tested with the salt aggregation test method aggregated a at very high ammonium sulfate molarities. The hydrophobicity-interaction chromatography results show that L. monocytogenes Scott A cells do not adhere to octyl-Sepharose unless the pH is low. Results from contact angle measurements showed that the surface free energy of strain Scott A was 65.9 mJ.m-2, classifying this microorganism as a hydrophilic bacterium. In addition, the interfacial free energy of adhesion of L. monocytogenes Scott A estimated for polypropylene and rubber was lower than that for glass and stainless steel. However, these theoretical implications could not be correlated with the attachment capabilities of L. monocytogenes.  相似文献   

5.
AIMS: The influence of biosurfactant compounds produced by a strain of Pseudomonas fluorescens on the adhesion of Listeria monocytogenes LO28 to polytetrafluoroethylene (PTFE) and AISI 304 stainless steel surfaces was investigated. METHODS AND RESULTS: The biosurfactant was produced according to a simple, novel technique based on cultivation on nutrient agar. Adhesion studies were performed using L. monocytogenes cells cultured at 20 or 37 degrees C. CONCLUSIONS: A substrate-dependent behaviour of the LO28 strain (larger number of cells adhering to stainless steel than to PTFE), and a significant reduction (< 90%) in microbial adhesion levels through the prior adsorption of biosurfactants on stainless steel surfaces, which can be related to a change in the electron-donor characteristics of this substratum, was demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY: The prior adsorption of biosurfactants on solid surfaces may constitute a new and effective means of combating the implantation of pathogenic micro-organisms in food processing plants.  相似文献   

6.
An assay was developed to measure the number of Listeria monocytogenes cells adhering to stainless steel, and was used to investigate the adherence of 111 strains of the organism, which included representatives with respect to serotype, carriage of plasmids, source and persistence in the food processing environment. Growth and adherence curves of four L. monocytogenes strains over 48 h were obtained. While the growth curves of all four micro-organisms were seen to reach similar levels at stationary phase, there was still substantial variation among the adherence curves. In addition, a scatter-graph of growth vs adherence counts at 24 h showed poor correlation. These factors indicated that interstrain variation in adherence at stationary phase is due to factor(s) intrinsic to each strain of L. monocytogenes. Persistent strains were found to adhere in significantly greater numbers than sporadic strains, and variation was also found among serotypes, with serotype 1/2c showing significantly greater adherence than serotypes 1/2a and 4b; 4b strains were significantly higher than those of 1/2a strains. No significant difference was found between strains according to source or plasmid carriage.  相似文献   

7.
Listeriosis is an important food-borne disease that causes high rates of morbidity and mortality. For reasons that are not clear, most large outbreaks of human listeriosis involve Listeria monocytogenes serotype 4b. Relatively little is known about the pathogenesis of listeriosis following gastrointestinal exposure to food-borne disease isolates of L. monocytogenes. In the present study, we investigated the pathogenesis of systemic infection by the food-borne isolate Scott A in an intragastric (i.g.) mouse challenge model. We found that the severity of infection with L. monocytogenes Scott A was increased in mice made neutropenic by administration of monoclonal antibody RB6-8C5. This observation was similar to a previous report on a study with the laboratory strain L. monocytogenes EGD. Prior administration of sodium bicarbonate did not enhance the virulence of L. monocytogenes strain Scott A for i.g. inoculated mice. Following i.g. inoculation of mice, two serotype 4b strains of L. monocytogenes (Scott A and 101M) achieved a greater bacterial burden in the spleen and liver and elicited more severe histopathological damage to those organs than did a serotype 1/2a strain (EGD) and a serotype 1/2b stain (CM). Of the four strains tested, only strain CM exhibited poor survival in synthetic gastric fluid in vitro. The other three strains exhibited similar patterns of survival at pHs of greater than 5 and relatively rapid (<30 min) loss of viability at pHs of less than 5.0. Growth of L. monocytogenes Scott A at temperatures of 12.5 to 37 degrees C did not affect its ability to cause systemic infection in i.g. inoculated mice. These observations suggest that the serotype 4b L. monocytogenes strains Scott A and 101M possess one or more virulence determinants that make them better able to cause systemic infection following inoculation via the g.i. tract than do the serotype 1/2 strains EGD and CM.  相似文献   

8.
Cells of two strains of Listeria monocytogenes CNL 895807 and Scott A were grown to late exponential phase at different growth temperatures (37, 20 and 4 degrees C) with or without NaCl (7%), and their fatty acid compositions were analysed. The results showed that low thermal adaptation response of L. monocytogenes CNL was different than that of the Scott A strain, and it was based on both an increase of anteiso-branched-chain fatty acids and a significant decrease of straight-chain fatty acids. However, the main modifications observed in the Scott A strain when grown at a low temperature were a decrease of the proportion of ai17:0 and an increase of ai15:0. In hyperosmotic medium and over the entire temperature range (4 degrees C, 20 degrees C and 37 degrees C) the two L. monocytogenes strains showed a cellular fatty acid profile dominated by ai15:0. In addition, a decrease of the two major straight-chain fatty acids (14:0 and 16:0) was observed in the CNL strain. These results demonstrated that the CNL strain showed different behaviours of low thermal and salt adaptation to maintain membrane fluidity, which are based both on an increase of anteiso-branched-chain fatty acids, and a significant decrease of straight-chain fatty acids.  相似文献   

9.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37 degrees C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 10(3) CFU of L. monocytogenes/ml and 10(5) CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37 degrees C for 24 h, 15 degrees C for 14 days, 8 degrees C for 21 days, and 4 degrees C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37 degrees C, two at 15 and 8 degrees C, and three at 4 degrees C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4 degrees C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log(10) CFU of L. monocytogenes/cm(2)). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37 degrees C.  相似文献   

10.
Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32 degrees C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.  相似文献   

11.
Aims:  To assess the ability of Listeria monocytogenes to form biofilm on different food-contact surfaces with regard to different temperatures, cellular hydrophobicity and motility.
Methods and Results:  Forty-four L. monocytogenes strains from food and food environment were tested for biofilm formation by crystal violet staining. Biofilm levels were significantly higher on glass at 4, 12 and 22°C, as compared with polystyrene and stainless steel. At 37°C, L. monocytogenes produced biofilm at significantly higher levels on glass and stainless steel, as compared with polystyrene. Hydrophobicity was significantly ( P  < 0·05) higher at 37°C than at 4, 12 and 22°C. Thirty (68·2%) of 44 strains tested showed swimming at 22°C and 4 (9·1%) of those were also motile at 12°C. No correlation was observed between swimming and biofilm production.
Conclusions:  L. monocytogenes can adhere to and form biofilms on food-processing surfaces. Biofilm formation is significantly influenced by temperature, probably modifying cell surface hydrophobicity.
Significance and Impacts of the Study:  Biofilm formation creates major problems in the food industry because it may represent an important source of food contamination. Our results are therefore important in finding ways to prevent contamination because they contribute to a better understanding on how L. monocytogenes can establish biofilms in food industry and therefore survive in the processing environment.  相似文献   

12.
AIMS: The aim of this study was to demonstrate the inhibitory capacity of Carnobacterium strains against a collection of Listeria monocytogenes strains in cold-smoked salmon (CSS). METHODS AND RESULTS: Three bacteriocin-producing strains, Carnobacterium divergens V41, C. piscicola V1 and C. piscicola SF668, were screened for their antilisterial activity against a collection of 57 L. monocytogenes strains selected from the French smoked salmon industry, using an agar spot test. All the Listeria strains were inhibited but three different groups could be distinguished differing in sensitivity to the three Carnobacterium strains. However, C. divergens V41 always had the highest inhibitory effect. The antilisterial capacity was then tested in sterile CSS blocks co-inoculated with Carnobacterium spp. and mixtures of L. monocytogenes strains. C. divergens V41 was the most efficient strain, maintaining the level of L. monocytogenes at <50 CFU g(-1) during the 4 weeks of vacuum storage at 4 and 8 degrees C, whatever the sensitivity of the set of L. monocytogenes strains. CONCLUSIONS: C. divergens V41 may be a good candidate for biopreservation in CSS. SIGNIFICANCE AND IMPACT OF THE STUDY: A biopreservation strategy for CSS against the risk of L. monocytogenes was investigated using bacteriocin-producing lactic acid bacteria.  相似文献   

13.
Nine Listeria monocytogenes strains were treated individually with a continuous pulsed electric field (PEF) apparatus, and their sensitivities to the treatment were compared at 25 kV/cm. When cell suspensions of these strains in 0.1% NaCl (pH 7.0) were treated at 23 degrees C for 144 micro s, inactivation ranged from 0.7 to 3.7 log(10) CFU/ml. Inactivation by 72- micro s PEF treatments at 37 degrees C ranged from 0.3 to 2.5 log(10) CFU/ml. L. monocytogenes OSY-8578 was substantially more resistant than other strains when cells were PEF treated in 0.1% NaCl, whereas Scott A was one of the most sensitive strains. The superiority of OSY-8578's resistance to that of Scott A was confirmed in 50% diluted acid whey (pH 4.2). Changes in sensitivity to PEF during phases of growth were minimal in OSY-8578 and substantial in Scott A. Use of L. monocytogenes OSY-8578, therefore, is recommended in studies to optimize PEF processes that target L. monocytogenes. The nine L. monocytogenes strains were genotyped with pulsed-field gel electrophoresis (PFGE) and arbitrarily primed PCR (AP-PCR) techniques. These strains were better differentiated with PFGE than with AP-PCR. The target strain (OSY-8578) was characterized by both molecular typing techniques, but resistance to PEF, in general, was not associated with a particular genotype group.  相似文献   

14.
Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.  相似文献   

15.
Wheys from making Camembert cheese were either uncultured or cultured with Penicillium camemberti, adjusted to pH 5.0, 5.2, 5.4, 5.6, 6.2, and 6.8, and filter sterilized. Whey samples were inoculated to contain 100 to 500 Listeria monocytogenes (strains Scott A, V7, CA, or OH) cfu/mL and incubated at 6 degrees C. Counts of L. monocytogenes were obtained by surface plating appropriate dilutions on Tryptose Agar. Listeria monocytogenes failed to grow at or below pH 5.4; except for strains Scott A and OH which grew in cultured whey at pH 5.4 and attained populations of 7.8 x 10(3) and 5.4 x 10(4) cfu/mL, respectively, after 35 d of storage. In uncultured whey at pH 5.6, 6.2, and 6.8, populations of L. monocytogenes increased from 7.20 to 7.81, 7.51 to 8.23, and 7.48 to 8.08 log10 cfu/mL, respectively, after 35 d of storage at 6 degrees C. In cultured whey at pH 5.6, 6.2, and 6.8, numbers of L. monocytogenes increased from 7.53 to 8.13, 7.82 to 8.55, and 7.95 to 8.80 log10 cfu/mL, respectively, after 35 d of storage. Generation times for L. monocytogenes at 6 degrees C in uncultured whey at pH 5.6, 6.2, and 6.8 ranged between 25.3 and 31.6 h, 14.8 and 21.1 h, and 14.0 and 19.4 h, respectively, depending on the Listeria strain. In contrast, generation times were significantly (p less than 0.05) shorter in cultured whey and ranged between 16.6 and 27.4 h, 10.3 and 16.6 h, and 17.4 and 16.3 h at pH values of 5.6, 6.2, and 6.8, respectively.  相似文献   

16.
Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.  相似文献   

17.
AIMS: The aim of this study was to determine the role of curli in attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel. METHODS AND RESULTS: Three curli-deficient strains (43895-, 43894- and E0018-) and three curli over-producing strains (43895+, 43894+ and E0018+) of E. coli O157:H7 were studied. Stainless steel coupons (SSC) were immersed in cell suspensions of each strain for 24 h at 4 degrees C. The number of cells attached to SSC was determined. To determine the ability of attached cells to form biofilm, SSC were immersed in 10% of tryptic soya broth up to 6 days at 22 degrees C. Curli-deficient and curli-producing strains did not differ in their ability to attach to SSC, but only curli-producing strains formed biofilms. CONCLUSIONS: Curli production by E. coli O157:H7 does not affect attachment of cells on stainless steel but curli-producing strains are better able to form biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY: Curli production by E. coli O157:H7 enhances its ability to form biofilm on stainless steel, thereby potentially resulting in increased difficulty in removing or killing cells by routine cleaning and sanitizing procedures used in food-processing plants.  相似文献   

18.
Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60 degrees C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45 degrees C, whereas the other two strains demonstrated a decline at 50 degrees C. Sublethal heating of the cells at 55 degrees C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H2O2 resistance.  相似文献   

19.
Four strains of Listeria monocytogenes were examined for catalase (CA) and superoxide dismutase (SOD) activities. The two strains having the highest CA activities (LCDC and Scott A) also possessed the highest SOD activities. The CA activity of heated cell extracts of all four strains examined decreased sharply between 55 and 60 degrees C. SOD was more heat labile than CA. Two L. monocytogenes strains demonstrated a decline in SOD activity after heat treatment at 45 degrees C, whereas the other two strains demonstrated a decline at 50 degrees C. Sublethal heating of the cells at 55 degrees C resulted in increased sensitivity to 5.5% NaCl. Exogenous hydrogen peroxide was added to suspensions of L. monocytogenes; strains producing the highest CA levels showed the greatest H2O2 resistance.  相似文献   

20.
Antimicrobial efficacy of ultra-high-pressure (UHP) can be enhanced by application of additional hurdles. The objective of this study was to systematically assess the enhancement in pressure lethality by TBHQ treatment, against barotolerant strains of Escherichia coli O157:H7 and Listeria monocytogenes. Two L. monocytogenes Scott A and the barotolerant OSY-328 strain, and two E. coli O157:H7 strains, EDL-933 and its barotolerant mutant, OSY-ASM, were tested. Cell suspensions containing TBHQ (50 ppm, dissolved in dimethyl sulfoxide) were pressurized at 200 to 500 MPa (23+/-2 degrees C) for 1 min, plated on tryptose agar and enumerated the survivors. The TBHQ-UHP combination resulted in synergistic inactivation of both pathogens, with different degrees of lethality among strains. The pressure lethality threshold, for the combination treatment, was lower for E. coli O157:H7 (> or = 200 MPa) than for L. monocytogenes (> 300 MPa). E. coli O157:H7 strains were extremely sensitive to the TBHQ-UHP treatment, compared to Listeria strains. Interestingly, a control treatment involving DMSO-UHP combination consistently resulted in higher inactivation than that achieved by UHP alone, against all strains tested. However, sensitization of the pathogens to UHP by the additives (TBHQ in DMSO) was prominently greater for UHP than DMSO. Differences in sensitivities to the treatment between these two pathogens may be attributed to discrepancies in cellular structure or physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号