首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Female birds deposit variable amounts of androgens, such as testosterone, into the yolks of their eggs. Evidence suggests that yolk androgens play an important role in the determination of offspring phenotype. While androgens are generally regarded as anabolic and immunosuppressive, studies of the behavioral and physiological effects of yolk androgens on offspring of several avian species have been conflicting, leaving the adaptive significance associated with deposition patterns of yolk androgens unclear. We injected either a physiological dose of testosterone or a control vehicle into house finch (Carpodacus mexicanus) eggs and examined the effects of these injections on offspring growth and immunity. Two days after hatching, nestlings from eggs treated with testosterone were significantly larger than nestlings from eggs treated with a control injection, suggesting a stimulatory effect of yolk androgens in early development. By 8 d after hatching, however, this effect disappeared, and chicks from the two treatment groups were similar in size. Nestlings in the testosterone treatment group showed a significantly larger swelling response to phytohemagglutinin than control nestlings 15 d after hatching, which is close to fledging. Overall, our observations show that when food resources are abundant, testosterone stimulates both early growth and immunity in developing house finches.  相似文献   

2.
Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings'' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes.  相似文献   

3.
In the field as well as in the laboratory, human-generated stress responses are reduced in adult animals previously habituated to humans in comparison to non-habituated individuals. In birds, yolk steroid levels vary with maternal environment and condition. We tested the hypothesis that the experience of female birds with humans could affect yolk steroids levels and offspring phenotype. Two groups of Japanese quail, one habituated to humans (H) and a second non-habituated (NH), were exposed daily to brief human disturbances. We analysed egg quality, offspring growth, and offspring emotional reactivity. NH females produced eggs with less androgens (testosterone and androstenedione) and more immunoreactive progesterone compared to birds habituated to humans. NH females produced eggs with less yolk, heavier shell and chicks hatching later and being smaller as compared to habituated individuals. A lower emotional reactivity was found in young of NH females compared to young of H females. Thus, human disturbance of the mother triggered different effects on chick phenotype depending on previous experience of mother birds with humans. In addition, we describe for the first time the influence of environmental stimuli on yolk immunoreactive progesterone levels. Our results show that a relatively minor difference in behavioral habituation may have substantial effects on eggs and offspring. This has obvious implications for keeping and handling laboratory animals, for conservation biology and for animal welfare.  相似文献   

4.
In birds, yolk androgen concentrations in eggs can increase or decrease over the laying sequence and common hypotheses hold that this serves to favour the competitive ability of either first- or last-hatched chicks depending on the prevailing conditions, and thus promote brood reduction or maintenance of original brood size respectively. Intra-clutch variation of testosterone can shift relative competitive ability of siblings and hence competitive dynamics. In a natural population of great tits, we experimentally investigated the effects and function of maternal testosterone on offspring phenotype in relation to the laying position of the egg in a context of hatching asynchrony. To this end, we created three types of clutches where either the first three or the last three eggs of a clutch were injected with testosterone (T) dissolved in sesame oil, and the remaining eggs with sesame oil only, or where all eggs of a clutch were injected with sesame oil. Increased levels of yolk T in the last-laid eggs resulted in the last-hatched chicks being significantly lighter and smaller than their siblings, while increased levels of T in the first-laid eggs had no direct effect on the first-hatched chicks, but an indirect negative effect on their siblings. Our results suggest that females can potentially adjust offspring phenotype by modulating, over the laying sequence, the amounts of T deposited in the eggs. These results are in contradiction, however, with current hypotheses and previous findings, which suggest that under good conditions higher levels of maternally derived T in the last-laid eggs should mitigate the negative effects of hatching asynchrony.  相似文献   

5.
Avian egg yolk contains androgenic hormones, such as testosterone, of maternal origin. Experimental elevation of yolk testosterone levels enhances growth of canary chicks. Success in sibling competition, due to increased begging, is presumed to underlie this growth enhancement, because canary hatchlings from testosterone-treated eggs beg longer in response to vibrational stimuli than controls. Furthermore, experimental elevation of both yolk androstenedione and testosterone increased chick growth and begging in black-headed gulls. We measured daily growth of European starling (Sturnus vulgaris) chicks hatching from testosterone-treated or vehicle-treated (control) eggs until 14 days of age, and measured begging behavior at hatching and at 5 days of age. A temporary drought caused relatively high levels of early brood reduction for this population; 2- and 3-day-old chicks were most likely to starve. We found that chicks from testosterone-treated eggs were less likely to starve than control chicks, and were heavier on the days when most brood reduction occurred. However, chicks from testosterone-treated eggs begged less than control chicks on the day of hatching, and begged similarly at 5 days of age. Thus, while yolk testosterone did increase growth during periods of (presumably) high competition, increased begging does not appear to mediate this effect. Instead, testosterone may induce more efficient energy use, for example, by decreasing ineffective begging. While our results indicate that elevated yolk testosterone enhances survival, and thus offspring and parental fitness, further evidence regarding the fitness consequences of yolk androgens are vital to understanding their role in avian life history.  相似文献   

6.
Prenatal learning plays an important role in the ontogeny of behavior and birds provide a useful model to explore whether and how prenatal exposure to hormones of maternal origin can influence prenatal learning and the development of behavior. In this study we assessed if prenatal exposure to yolk testosterone can influence auditory learning in embryos of Northern bobwhite quail (Colinus virginianus). We experimentally enhanced testosterone concentrations in bobwhite quail eggs prior to incubation. The embryos from these T-treated eggs as well as control embryos that had received the vehicle-only or were non-treated were exposed to an individual bobwhite hen's maternal call for 120 min over the course of the day prior to hatching. All chicks were tested at 24 h following hatching for their auditory preference between the familiar bobwhite maternal call versus an unfamiliar bobwhite maternal call. T-treated chicks spent significantly more time in proximity to the familiar call compared to the unfamiliar call and also showed shorter latencies to approach the familiar call than control birds. Increased emotional reactivity, i.e. propensity to express fear responses, was also found in T-treated chicks. Baseline heart rates recorded in a second group of T-treated embryos and control embryos did not differ, which suggests no effect of yolk testosterone on baseline arousal level. To our knowledge this is the first demonstration of the influence of prenatal exposure to testosterone on auditory learning.  相似文献   

7.
Maternal effects can have an adaptive value if they improve the performance of offspring. As such, the transfer of maternal testosterone (T) to the eggs has been suggested as a mechanism for adaptive maternal control of offspring phenotype in birds, although recent studies have shown negative effects of testosterone on hatching rate and chick survival. Here, we experimentally investigated whether socially stressful conditions experienced by female house sparrows during egg laying affected their circulating levels of androgens and the amount transferred to the eggs. Social stress was simulated by the intrusion of a foreign male placed near the nest box during the egg‐laying sequence. We found that (1) both female and yolk testosterone titres were positively related to breeding density; (2) yolk testosterone was negatively correlated with maternal testosterone; (3) yolk testosterone was positively correlated with the behavioural response of females towards the intruder and (4) the interaction between social intrusion and breeding density affected the amount of testosterone transferred to the eggs. Altogether, our results suggest that females may be able to modulate the amount of testosterone they allocate to their eggs according to the social environment they experience during egg laying.  相似文献   

8.
Avian eggs contain considerable amounts of maternal yolk androgens, which have been shown to beneficially influence the physiology and behaviour of the chick. As androgens may suppress immune functions, they may also entail costs for the chick. This is particularly relevant for colonial species, such as the black-headed gull (Larus ridibundus), in which the aggregation of large numbers of birds during the breeding season enhances the risk of infectious diseases for the hatching chick.To test the effect of maternal yolk androgens on the chick's immune function, we experimentally manipulated, in a field study, yolk androgen levels within the physiological range by in ovo injection of either androgens (testosterone and androstenedione) or sesame oil (control) into freshly laid eggs. We determined cell-mediated immunity (CMI) and humoral immunity of the chicks at the beginning of the nestling period to evaluate early modulatory effects of yolk androgens on immune function.Embryonic exposure to elevated levels of androgens negatively affected both CMI and humoral immunity in nestling gull chicks. Consequently, maternal yolk androgens not only entail benefits of enhanced competitiveness and growth as previously shown, but also costs in terms of immunosuppression. The outcome of embryonic yolk androgen exposure thus likely depends on the post-hatching circumstances for the developing offspring such as parasite exposure and degree of sibling competition.  相似文献   

9.
Parents are selected to preferentially invest in the offspring with highest reproductive value. One mechanism for achieving this is the modification of competitive asymmetries between siblings by maternal hormones. In many organisms, offspring value varies according to birth position in the brood, which determines survival chances and competitive advantage over access to resources. In birds, variation in yolk androgen allocation over the laying sequence is thought to modulate dominance of senior chicks over junior brood mates. We tested this hypothesis in zebra finches, which show a naturally decreasing pattern of within-clutch testosterone allocation. We abolished these within-clutch differences by experimentally elevating yolk testosterone levels in eggs 2-6 to the level of egg 1, and we assessed fitness measures for junior offspring (eggs 2-6), senior offspring (egg 1), and their mothers. Testosterone-injected eggs hatched later than control eggs. Junior, but not senior, chicks in testosterone-treated broods attained poorer phenotypic quality compared to control broods, which was not compensated for by positive effects on seniors. Mothers were generally unaffected by clutch treatment. Thus, naturally decreasing within-clutch yolk testosterone allocation appears to benefit all family members and does not generally enhance brood reduction by favoring senior chicks, in contrast to the widely held assumption.  相似文献   

10.
We tested the hypothesis that mother birds counterbalance the negative effects of hatching asynchrony for later-hatched chicks by increasing the yolk androgen concentrations in consecutive eggs of their clutch. In doing so, they may adaptively tune each offspring's competitive ability and, thus, growth and survival. However, evidence in support of this hypothesis is contradictory. The yolk concentrations of maternal androgens in the eggs of black-headed gulls increase significantly with the laying order of the eggs in a clutch. We experimentally tested the functional consequences of this increase on chick development under natural conditions by injecting eggs with either an oil or androgen solution. We created experimental clutches in which androgen levels either stayed constant or increased with laying order while controlling for differences in egg quality by using only first-laid eggs. We then compared development, growth and survival between these broods. Androgen treatment enhanced embryonic development because androgen-treated eggs hatched half a day earlier than controls, while their size at hatching was similar to oil-treated controls. Androgen treatment did not increase chick survival, but it enhanced growth. Androgen-treated, third-hatched chicks had a higher body mass and longer legs than third-hatched chicks that hatched from oil-treated eggs. At the same time, growth of first chicks (which were all oil treated) was reduced by the presence of two androgen-treated siblings, suggesting that yolk androgens enhance the competitive ability of later-hatched chicks. Our results support the hypothesis that transfer of different amounts of androgens to the eggs of a clutch is a mechanism by which mothers maximize their reproductive output.  相似文献   

11.

Background

Environmental challenges might affect the maternal organism and indirectly affect the later ontogeny of the progeny. We investigated the cross-generation impact of a moderate heat challenge in chickens. We hypothesized that a warm temperature–within the thermotolerance range- would affect the hormonal environment provided to embryos by mothers, and in turn, affect the morphology and behavioral phenotype of offspring.

Methodology/Principal Findings

Laying hens were raised under a standard thermal condition at 21°C (controls) or 30°C (experimental) for 5 consecutive weeks. A significant increase was observed in the internal temperature of hens exposed to the warm treatment; however plasma corticosterone levels remained unaffected. The laying rate was not affected, but experimental hens laid lighter eggs than the controls during the treatment. As expected, the maternal thermal environment affected yolk hormone contents. Eggs laid by the experimental hens showed significantly higher concentrations of yolk progesterone, testosterone, and estradiol. All chicks were raised under standard thermal conditions. The quality of hatchlings, growth, feeding behavior and emotional reactivity of chicks were analyzed. Offspring of experimental hens (C30 chicks) were lighter but obtained better morphological quality scores at hatching than the controls (C21 chicks). C30 chicks expressed lesser distress calls when exposed to a novel food. Unlike C21 chicks, C30 chicks expressed no preference for energetic food.

Conclusion/Significance

Our findings suggest that moderate heat challenge triggers maternal effects and modulate the developmental trajectory of offspring in a way that may be adaptive. This suggests that the impact of heat challenges on captive or wild populations might have a cross-generation effect.  相似文献   

12.
Maternal yolk hormones in bird eggs are thought to adjust the offspring to the post-hatching environment. This implies that the effects of maternal yolk hormones should vary with the post-hatching environment, but to date such context-dependency has largely been ignored. We experimentally increased yolk testosterone concentrations in canary eggs and simultaneously manipulated the post-hatching context via an experimental tick-infestation of the chicks. This allows us to evaluate the context-dependency of hormone-mediated maternal effects, as it has previously been shown that ectoparasites alter the maternal yolk androgen deposition. The experimental tick infestation reduced growth in chicks from sham-treated eggs, indicating harmful effects of this ectoparasite in canaries. Chicks from testosterone-treated eggs were not affected in their development by ticks, suggesting lower ectoparasite vulnerability. But this may also be due to the fact that experimentally elevated yolk testosterone levels impaired growth even under parasite-free conditions. This contrasts previous studies, but these studies often manipulated first laid eggs, while we used eggs of subsequent laying positions. Later laid eggs are presumably of lower quality and contain higher yolk testosterone concentrations. Thus, the effects of elevated yolk testosterone on growth may be dose-dependent or vary with the egg quality, suggesting prenatal context-dependency.  相似文献   

13.
Yolk androgens affect offspring hatching, begging, growth and survival in many bird species. If these effects are sex-specific, yolk androgen deposition may constitute a mechanism for differential investment in male and female offspring. We tested this hypothesis in zebra finches. In this species, females increase yolk-testosterone levels and produce male-biased sex ratios when paired to more attractive males. We therefore predicted that especially sons benefit from elevated yolk androgens. Eggs were injected with testosterone or sesame oil (controls) after 2 days of incubation. Testosterone had no clear effect on sex-specific embryonic mortality and changed the pattern of early nestling mortality independent of offspring sex. Testosterone-treated eggs took longer to hatch than control eggs. Control males begged significantly longer than females during the first days after hatching and grew significantly faster. These sex differences were reduced in offspring from testosterone-treated eggs due to prolonged begging durations of daughters, enhanced growth of daughters and reduced growth of sons. The results show that variation in maternal testosterone can play an important role in avian sex allocation due to its sex-specific effects on offspring begging and growth.  相似文献   

14.
Maternally derived hormones in cleidoic eggs have been implicated in mediating growth, behavior, and social interactions among offspring. Given these widespread and significant effects, hormonal investments have the potential to greatly influence fitness of offspring. Intraspecific variation can exist at three levels (within individual eggs, among eggs within clutches, and among eggs from different females), each of which has different implications for offspring. We characterized all three levels of variation in maternally derived androgens (testosterone and androstenedione) present in yolks of American coot eggs. We found no variation in testosterone levels within eggs which suggests that embryos are exposed to constant androgen levels during development, and that field-based yolk biopsies are an appropriate way to sample eggs for this species. Within clutches, early-laid eggs had higher androgen levels than late-laid eggs, and this pattern may exacerbate negative effects of hatching asynchrony on chicks from late-hatching eggs if androgens provide chicks with a behavioral or growth advantage over chicks from eggs with lower androgen levels. American coots lay large clutches, and unequal resource allocation among offspring may be the optimal strategy for females with access to limited resources. Most of the variation in androgen levels occurred among eggs from different females. Females nesting on ponds with two other pairs laid eggs with significantly higher androgen levels than females living on ponds with fewer pairs. This suggests that increased territory defense behaviors influence the levels of androgens allocated to eggs and may be one mechanism underlying density-dependent effects on reproduction.  相似文献   

15.
The avian egg contains maternal hormones that affect behavior, growth, morphology, and offspring survival. Evidence to date suggests that patterns of yolk androgen deposition could provide females with a means to manipulate sibling competition and, thereby, increase their fitness. We examined yolk testosterone (T) concentrations in eggs of the smooth-billed ani (Crotophaga ani) to understand patterns of androgen deposition in eggs of this plural-breeding joint-nesting cooperatively breeding species. We tested the hatching asynchrony adjustment hypothesis, which states that increases in yolk androgen levels over the laying sequence function to mitigate the disadvantage of being a later-hatched chick in species without adaptive brood reduction. We also investigated the effect of group size on yolk T deposition to test the hypothesis that females in multi-female groups could give a competitive edge to their own chicks by depositing higher T levels in their eggs. Predictions of the hatching asynchrony adjustment hypothesis were supported in both single- and multi-female groups as yolk testosterone levels increased from early- to late-laid eggs. This suggests that ani females can influence nestling competition and chick survival by within-clutch differential T allocation. Unexpectedly, we did not observe an effect of group size on yolk T deposition. Yolk testosterone concentrations may not be a mere reflection of a female's hormonal status as female plasma circulating levels of T did not vary in the same direction as yolk T levels. Results of this study therefore support the idea that females may adaptively manipulate chick behavior through hormonal deposition in eggs.  相似文献   

16.
We investigated in the black-headed gull whether female deposition of antioxidants and immunoglobulins (enhancing early immune function), and testosterone (suppressing immune function and increasing early competitive skills) correlate suggesting that evolution has favoured the mutual adjustment of different pathways for maternal effects. We also took egg mass, the position of the egg in the laying sequence and offspring sex into account, as these affect offspring survival. Yolk antioxidant and immunoglobulin concentrations decreased across the laying order, while yolk testosterone concentrations increased. This may substantially handicap the immune defence of last-hatched chicks. The decrease in antioxidant levels was greater when mothers had a low body mass and when the increase in testosterone concentrations was relatively large. This suggests that female black-headed gulls are constrained in the deposition of antioxidants in last-laid eggs and compensate for this by enhanced testosterone deposition. The latter may be adaptive since it re-allocates the chick's investment from costly immune function to growth and competitive skills, necessary to overcome the consequences of hatching late from an egg of reduced quality.  相似文献   

17.
An attempt was made to evaluate the protective efficacy of maternal antibodies in chicks against salmonellosis. Layer chicks ageing 21 days were individually vaccinated with 100 microg of Salmonella enterica subspecies enterica serovar Weltevreden (BM 1643) toxoid adjuvanted with vitamin E subcutaneously. After 90 days of the primary vaccination the birds were given booster dose of the vaccine. The saline extract of the yolk of eggs laid by the vaccinated birds yielded agglutination and ELISA titres ranging from 43.2 +/- 5.33 to 75.2 +/- 6.26 and 4.987 x 10(3) +/- 0.54 to 5.89x103 +/- 0.56, respectively. Sera of chicks hatched from eggs laid by the vaccinated layers were also subjected to agglutination and ELISA. Agglutination and ELISA titres on the 5th day--post hatching (dph) were 21.6 +/- 1.75 and 4.025 x 10(2) +/- 0.59, while on the 10th dph titers were 13.6 +/- 1.65 and 1.21 x 10(2) +/- 0.60, respectively. It was also observed that only one out of 6 chicks died when challenged with 2 x 10(9) CFU of S. serovar Gallirarum at the age of 7 days showing 83.33% protection. Thus it can be concluded that passive immunity confided by Salmonella enterica subspecies enterica serovar Weltevreden (BM 1643) toxoid can protect chicks against salmonellosis during their early days of life.  相似文献   

18.
The eggs of birds and reptiles contain detectable levels of several steroid hormones, and experimental application of such steroids can reverse genetically determined sex of the offspring. However, any causal influence of maternally derived yolk steroids on sex determination in birds and reptiles remains controversial. We measured yolk hormones (dihydrotestosterone, testosterone, and 17 beta-estradiol) in newly laid eggs of the montane scincid lizard Bassiana duperreyi. This species is well suited to such an analysis because (1) offspring sex is influenced by incubation temperatures and egg size as well as by sex chromosomes, suggesting that yolk hormones might somehow be involved in the complex pathways of sex determination, and (2) experimental application of either estradiol or fadrozole to such eggs strongly influences offspring sex. We obtained yolk by biopsy, before incubating the eggs at a temperature that produces a 50:50 sex ratio. Yolk steroid levels varied over a threefold range between eggs from different clutches, but there were no significant differences in yolk steroids, or in relative composition of steroids, between eggs destined to become male versus female. Further, yolk steroid concentrations were not significantly related to egg size. Thus, yolk steroid hormones do not appear to play a critical role in sex determination for B. duperreyi.  相似文献   

19.
Maternal effects are a powerful tool that parents can use to modify the phenotype of their offspring. In birds, the amount of androgens that females deposit in their eggs has been shown to influence early development and adult behavioural phenotypes. Differences in such behavioural strategies have been used as the target of artificial selection programmes with a view to improve animal welfare. In this study, we tested whether artificial selection for divergent social behaviour in Japanese quail had resulted in correlated changes in yolk androgen levels. We used lines that had been selected at the chick stage for high and low motivation to regain contact with a group of conspecific chicks. This procedure has led to important behavioural differences in the high and low line in a suite of behavioural correlates of sociality. We found that eggs laid by the line selected for high motivation for social reinstatement contained more than twice the amount of yolk testosterone of eggs laid by females from the low line, while the unselected line laid eggs with intermediate levels. This finding strongly suggests a functional link between these two traits, and underlines the possible role of yolk androgen modulation in promoting the evolution of behavioural syndromes.  相似文献   

20.
Maternal effects are typically thought to enhance rather than reduce offspring performance, but asynchronous hatching (ASH) in birds typically produces a size hierarchy within a clutch that frequently reduces the growth and survival of nestlings from eggs that hatch later. Given that yolk steroids can significantly affect offspring phenotype and that in many species the levels of yolk steroids have been found to increase with laying order, the maternal transfer of steroids to egg yolk has been proposed as a mechanism for females to offset the deleterious effects of ASH. To test this hypothesis, we determined whether yolk steroids varied with laying order or clutch size in Common Grackles (Quiscalus quiscula). Because ASH varies with clutch size (hatching span averages 48 h in five-egg clutches, 24 h in four-egg clutches) and regularly results in the starvation of later hatched nestlings, we predicted: (1) testosterone and 17?-estradiol levels should increase with laying order in both clutch sizes to mitigate the negative effects of ASH on last-hatched nestlings, and (2) the increase should be greater in five-egg clutches due to more pronounced hatching asynchrony. Using a competitive-binding steroid radioimmunoassay, we found no systematic variation in either testosterone or estradiol levels relative to laying order or clutch size. In the absence of evidence that yolk steroids interact adaptively with ASH, research must look elsewhere for potential benefits that might compensate for the costs these steroids impose on nestlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号