首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of stimulation of the dorsal funiculus on dorsal surface potentials (DSPs) of the spinal cord evoked by stimulation of a peripheral nerve and on antidromic action potentials (AAPs) evoked by stimulation of terminal branches of primary afferent fibers and recorded from the afferent nerve or dorsal root, were investigated in acute experiments on spinal cats and on cats anesthetized with pentobarbital and chloralose. Stimulation of the dorsal funiculus led to biphasic inhibition of the N1-component of the DSP with maxima at the 15th–30th and 60th–80th milliseconds between the conditioning and testing stimuli. Maximal reinforcement of the AAP was found with these intervals. Bilateral division of the dorsal funiculi between the point of application of the conditioning stimuli and the point of recording the DSP abolished the first wave of inhibition of the DSP and the reinforcement of the AAP. After total transection of the cord above the site of conditioning stimulation the picture was unchanged. It is concluded that the initial changes in DSP and AAP are due to activation of the presynaptic inhibition mechanism by antidromic impulses traveling along nerve fibers running in the dorsal funiculus. Repeated inhibition of the DSP, like reinforcement of the AAP, can possibly be attributed to activation of similar inhibitory mechanisms through the propriospinal neurons of the spinal cord.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 401–405, July–August, 1973.  相似文献   

2.
We investigated inhibition of the N1-component of the spinal cord dorsal potential (CDP) evoked by experimental stimulation of the n. peroneus in spinal cats. Stimulation was carried out following two conditioning stimuli administered at different time intervals to the same or different cutaneous nerves. The interval between the last conditioning stimulus and the experimental one remained constant (20 msec). It is demonstrated that there is no dependence between weakening of inhibitory action of the second conditioning stimulus and inhibition of the dorsal horn interneurons excited by it that generate the N1-component of the CDP. It is hypothesized that mechanisms which act on the principle of negative feedback are present in the vincinity of the synaptic junctions of cutaneous afferent fibers with neurons of the substantia gelationsa, and that these mechanisms restrict the development of presynaptic inhibition during inflow of a series of afferent impulses into the cord.Dnepropetrovsk State University. Translated from Neirofiziologia, Vol. 1, No. 3, pp. 253–261, November–December, 1969.  相似文献   

3.
Changes in the N1-component and P-phase of the dorsal surface potential (DSP) of the spinal cord evoked by test stimulation of the posterior tibial nerve after conditioning stimulation of the sural nerve were investigated in anesthetized cats. The test responses were inhibited if stimulation was applied at short intervals. They then recovered to some extent, but after 1.8–2.2 msec, a further prolonged period of inhibition began. The initial inhibition was connected with occlusion of synaptic action, and the subsequent prolonged inhibition with the development of presynaptic inhibition. The latent periods of prolonged inhibition of the N1-component and P-phase of the DSP (2 msec) were almost exactly identical, and the curves showing the diminution of the initial occlusion of these components were very similar. The results demonstrate that presynaptic inhibition of the interneurons generating the N1-component of the DSP and of cells of the substantia gelatinosa which participate in depolarization of the presynaptic terminals of the cutaneous afferents is due to the action of depolarizing systems with similar temporal characteristics.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 510–515, September–October, 1972.  相似文献   

4.
Presynaptic inhibition of primary afferents can be evoked from at least three sources in the adult animal: 1) by stimulation of several supraspinal structures; 2) by spinal reflex action from sensory inputs; or 3) by the activity of spinal locomotor networks. The depolarisation in the intraspinal afferent terminals which is due, at least partly, to the activation of GABA(A) receptors may be large enough to reach firing threshold and evoke action potentials that are antidromically conducted into peripheral nerves. Little is known about the development of presynaptic inhibition and its supraspinal control during ontogeny. This article, reviewing recent experiments performed on the in vitro brainstem/spinal cord preparation of the neonatal rat, demonstrates that a similar organisation is present, to some extent, in the new-born rat. A spontaneous activity consisting of antidromic discharges can be recorded from lumbar dorsal roots. The discharges are generated by the underlying afferent terminal depolarizations reaching firing threshold. The number of antidromic action potentials increases significantly in saline solution with chloride concentration reduced to 50% of control. Bath application of the GABA(A) receptor antagonist, bicuculline (5-10 microM) blocks the antidromic discharges almost completely. Dorsal root discharges are therefore triggered by chloride-dependent GABA(A) receptor-mediated mechanisms; 1) activation of descending pathways by stimulation delivered to the ventral funiculus (VF) of the spinal cord at the C1 level; 2) activation of sensory inputs by stimulation of a neighbouring dorsal root; or 3) pharmacological activation of the central pattern generators for locomotion evokes antidromic discharges in dorsal roots. VF stimulation also inhibited the response to dorsal root stimulation. The time course of this inhibition overlapped with that of the dorsal root discharge suggesting that part of the inhibition of the monosynaptic reflex may be exerted at a presynaptic level. The existence of GABA(A) receptor-independent mechanisms and the roles of the antidromic discharges in the neonatal rat are discussed.  相似文献   

5.
In experiments on spinal cats changes in the second negative postsynaptic component (N2) of the dorsal surface potential (DSP) of the spinal cord recorded in the region of segment L7 was used as the index of inhibition of segmental dorsal horn interneurons. Conditioning and testing stimuli were applied at increasing time intervals to the popliteal and superficial peroneal nerves respectively. Changes in the N2 component were compared with changes in the N1 component of the DSP, reflecting mainly activity of nonsegmental ascending dorsal horn interneurons. After an initial short facilitation a conditioning volley of pulses evokes prolonged (over 500 msec) inhibition of the N2 component, characterized by the presence of two maxima (on the average at the 16th and 80th milliseconds) which indicate that two systems with different latent periods play a role in this inhibition. In its shape and temporal characteristics the curve of inhibition of the N2 component corresponds to the two-component dorsal root potential (DRP) recorded in spinal animals in response to stimulation of flexor afferents (FRA) [8, 19]. Together with other features, this similarity is evidence of the presynaptic nature of this inhibition. Intravenous injection of hexobarbital has a stronger action on inhibition of the N2 component, leading to a marked increase in its depth and duration. Suggestions are made regarding the functional organization of systems responsible for presynaptic inhibition of segmental dorsal horn interneurons.Deceased.Dnepropetrovsk State University. Translated from Neirofiziolgiya, Vol. 4, No. 1, pp. 75–82, January–February, 1972.  相似文献   

6.
The contribution of antidromic excitation of motoneurons to cord dorsum potentials (CDP) was studied in the spinal cord of anesthetized cats. It was shown that stimulation of ventral roots (VR) or peripheral nerves following deafferentiation of a number of segments by crosscutting of dorsal roots on the dorsal surface evokes appreciable positive-negative CDP (VR-CDP). Under intact conditions, VR effects of antidromic stimulation of efferent fibers brings appreciable input to the initial "fast" CDP component (the "afferent" peak); input values for the main mixed nerves of the hindlimb are presented. After conditioning stimulation of a mixed nerve, VR-CDP undergo inhibition with two maximums, associated with blocking of the effects of antidromic excitation of efferents by orthodromic mono- and polysynaptic reflex discharges of motoneurons. The hypothesis that intactness of efferents in nerves under stimulation can be determined from an analysis of initial CDP components is stated.Scientific-Research Institute of Biology, Dnepropetrovsk State University, Dnepropetrovsk. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 655–661, November–December, 1991.  相似文献   

7.
Presynaptic inhibition is one of the most powerful inhibitory mechanisms in the spinal cord. The underlying physiological mechanism is a depolarization of primary afferent fibers mediated by GABAergic axo-axonal synapses (primary afferent depolarization). The strength of primary afferent depolarization can be measured by recording of volume-conducted potentials at the dorsal root (dorsal root potentials, DRP). Pathological changes of presynaptic inhibition are crucial in the abnormal central processing of certain pain conditions and in some disorders of motor hyperexcitability. Here, we describe a method of recording DRP in vivo in mice. The preparation of spinal cord dorsal roots in the anesthetized animal and the recording procedure using suction electrodes are explained. This method allows measuring GABAergic DRP and thereby estimating spinal presynaptic inhibition in the living mouse. In combination with transgenic mouse models, DRP recording may serve as a powerful tool to investigate disease-associated spinal pathophysiology. In vivo recording has several advantages compared to ex vivo isolated spinal cord preparations, e.g. the possibility of simultaneous recording or manipulation of supraspinal networks and induction of DRP by stimulation of peripheral nerves.  相似文献   

8.
Experiments were carried out on cats six days after complete transection of the spinal cord. Cord dorsum potentials (CDP) were recorded in the vicinity of the third lumbar segment during stimulation of the isolated dorsolateral funiculus (DLF). The CDP consist of a rapid monophasic potential (which apparently reflects antidromic excitation of the cells of Clarke's column) and two subsequent slow negative waves, which are replaced by a long positive oscillation. In form, time characteristics, and behavior during thythmic stimulation, this potential differs considerably from the CDP recorded during stimulation of the afferent nerves. The presence of a positive phase of the CDP indicates that stimulation of the DLF evokes primary afferent depolarization (PAD). Stimulation of the DLF causes inhibition of the CDP evoked by stimulation of the afferent nerve. The time course of this inhibition corresponds to the time course of presynaptic inhibition. It is demonstrated that stimulation of the afferent nerve (n. femoralis) inhibits slow components of the CDP evoked by stimulation of the DLF. This inhibition reaches a maximum at the 16th millisecond; its duration exceeds 300 msec. Stronger and more prolonged inhibition of the same components is observed when both the conditioning and the testing stimuli are administered to the DLF. Since primary afferents do not take part in CDP emergence during stimulation of the DLF, it may be hypothesized that the observed inhibition develops as a result of depolarization of interneuron axon terminals.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 2, No. 5, pp. 520–527, September–October, 1970.  相似文献   

9.
In anesthetized immobilized frog we recorded changes in hind leg volume evoked by electrical stimulation of peripheral end of the sciatic nerve. The ranges of the stimulus amplitudes sufficient to induce vasodilator or vasoconstrictor reactions were estimated. In a separate set of experiments thresholds of A alpha beta, A delta and C-afferent fibers excitation were evaluated by recording waves of compound action potentials in VIII-X dorsal roots. It was found that vasodilation is elicited by the stimuli of virtually the same intensity range as the excitation of A delta afferent fibers, including low threshold one. Consequently we concluded that in frog these myelinated afferent fibers are capable of dilating the blood vessels by antidromic action. This finding is in contrast with antidromic vasodilation in mammals which is known to result mainly from the impulses of the unmyelinated afferent fibers.  相似文献   

10.
In spinal and anesthetized cats in the region of the lumbosacral thickening we have recorded the potentials of the dorsal surface (PDS) in response to single or paired stimulation of the peripheral nerves. The intervals between the stimuli were 400, 100, and 20 msec. The recording was made once every 15 sec. We have constructed the histograms of the changes in the N1-component recorded on conditioning and single stimulation. After conversion of the histograms for single responses we established agreement of the newly obtained histograms with those constructed for the conditioned responses. The coefficients of variance for both cases proved to be practically identical. In applying single stimulation of different strengths the coefficient of variance increased if the amplitude of the responses fell. The coefficient of variance for the low amplitude responses did not change on conditioning unlike that for the responses evoked by weak single stimulation. It has been shown that the confidence limits of change in the coefficient of variance for a confidence probability of 0.99 and 0.95 obtained in experiments with conditioning practically concur with the intervals for the single stimulation. It is concluded that presynaptic inhibition has no appreciable antifluctuation influences on the N1-component of the PDS.Dnepropetrovsk State University. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 10–16, January–February, 1970.  相似文献   

11.
Afferent stimulation of one canine thoracic cardiopulmonary nerve can generate compound action potentials in another ipsilateral cardiopulmonary nerve. These compound action potentials persist after acute decentralization of the middle cervical ganglion, indicating that they result from neural activity in the middle cervical ganglion and thoracic nerves. Changing the frequency of stimulation can alter the compound action potentials, suggesting that temporal facilitation or inhibition occurs in this middle cervical ganglion preparation. The compound action potentials can be modified by stimulation of sympathetic preganglionic fibers and by hexamethonium, atropine, phentolamine, propranolol, and (or) manganese. It thus appears that afferent cardiopulmonary nerves can activate efferent cardiopulmonary nerves via synaptic mechanisms in the stellate and middle cervical ganglia. It also appears that these mechanisms involve adrenergic and cholinergic receptors and are influenced by preganglionic sympathetic fibers arising from the cord.  相似文献   

12.
Antidromic dorsal root activity during naturally occurring locomotion (swimming and treadmill walking) was investigated during experiments on white rats. The activity observed consisted of phaselinked and tonic components of antidromic action potentials (APP). A strong correlation was found between intensity of AAP and that of afferent input during actual locomotion; AAP correlated less well with degree of electromyographic activity. Possible sources of the initiation of antidromic activity and the part played in spinal reflex control by presynaptic depolarization are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 579–585, September–October, 1988.  相似文献   

13.
Asphyxiation of the spinal cord for periods of 2-4 min leads to block of the monosynaptic pathway. At about the same time this blockage takes place, the afferent action potentials fail to invade the presynaptic terminals. Asphyxiation also interferes with the antidromic invasion of motoneurons, and the failure of the antidromic action potentials to invade the motoneuron dendrites coincides with the time of the disappearance of the orthodromic monosynaptic responses. During reoxygenation, both the presynaptic terminals and the dendrites recover their function, or rather their polarization, in a few seconds and yet synaptic transmission reappears only after several minutes. It is postulated that failure of synaptic transmission during asphyxia is due to depolarization of both the presynaptic terminals and the dendrites of the postsynaptic elements. However, repolarization of these elements during reoxygenation, is not sufficient to reestablish synaptic transmission, but recovery of some unidentified biochemical process is apparently necessary.  相似文献   

14.
Asphyxiation of the spinal cord for periods of 2–4 min leads to block of the monosynaptic pathway. At about the same time this blockage takes place, the afferent action potentials fail to invade the presynaptic terminals. Asphyxiation also interferes with the antidromic invasion of motoneurons, and the failure of the antidromic action potentials to invade the motoneuron dendrites coincides with the time of the disappearance of the orthodromic monosynaptic responses. During reoxygenation, both the presynaptic terminals and the dendrites recover their function, or rather their polarization, in a few seconds and yet synaptic transmission reappears only after several minutes. It is postulated that failure of synaptic transmission during asphyxia is due to depolarization of both the presynaptic terminals and the dendrites of the postsynaptic elements. However, repolarization of these elements during reoxygenation, is not sufficient to reestablish synaptic transmission, but recovery of some unidentified biochemical process is apparently necessary.  相似文献   

15.
The oculogyric nerves contain afferent fibers originating from the ophthalmic territory, the somata of which are located in the ipsilateral semilunar ganglion. These primary sensory neurons project to the Subnucleus Gelatinosus of the Nucleus Caudalis Trigemini, where they make presynaptic contact with the central endings of the primary trigeminal afferents running in the fifth cranial nerve. After complete section of the trigeminal root, the antidromic volleys elicited in the trunk of the third cranial nerve by stimulating SG of NCT consisted of two waves belonging to the A delta and C groups. The area of both components of the antidromic volleys decreased both after bradykinin and hystamine injection into the corresponding cutaneous region and after thermic stimulation of the ipsilateral trigeminal ophthalmic territory. The reduction of such potentials can be explained in terms of collision between the antidromic volleys and those elicited orthodromically by chemical and thermic stimulation. Also, capsaicin applied on the nerve induced an immediate increase, followed by a long lasting decrease, of orthodromic evoked response area. These findings bring further support to the nociceptive nature of the afferent fibers running into the oculomotor nerve.  相似文献   

16.
Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.  相似文献   

17.
The caudal extent of the penetration of primary afferent axons from the T12 and L1 dorsal roots and sural nerve has been investigated in adult decerebrate spinal rats. Microelectrode stimulation at the root entry zone (REZ) and at further caudal points in the spinal cord was used to generate antidromic action potentials in single fibres recorded in dorsal roots or peripheral nerves. A total of 209 units were recorded in T12 and L1 dorsal roots and 27% of these could be antidromically activated 10 mm caudal to the REZ. Fifteen percent of the units could be stimulated at the L4-5 border, 15 mm caudal to the T12 segment whereas 4.5% of the axons could be stimulated 25 mm caudally in the S4 segment, 11 segments caudal to the entry segment. Similar recordings made from units in the sural nerve showed that of all the sural axons that penetrated to the L6 segment 50%, 18% and 2% of these reached the S1, S2 and S4 segments respectively. The conduction velocities of these units were clearly in the A-beta range when recorded in the nerve but decreased on entering the spinal cord and were reduced by 83% at their caudal end point. The results show that substantial numbers of primary afferents have long-ranging caudal branches in areas beyond the regions of known postsynaptic effects. The functions of these caudal projections are unclear but they may represent a potential substrate for the development of functional connections under conditions of disease or denervation.  相似文献   

18.
The effect of a steady current passed through the spinal cord on antidromic discharges in primary afferent groups of Agb cutaneous nerves of the hind limb, evoked by single and paired stimulation of the terminals of these fibers, was investigated by Wall's technique in acute experiments on spinal and anesthetized cats. A current of up to 50–100 µA, flowing in the dorso-ventral direction, led to an increase in amplitude of antidromic dischanges evoked by single stimulation of afferent terminals; if the current flowed in the opposite direction, the opposite effect was observed. The relative degree of facilitation of antidromic discharges caused by conditioning stimulation of these same fibers was reduced by a polarizing current in either direction. It is suggested that the effects of the action of a steady current flowing through the spinal cord observed in these experiments are due mainly to shifts of membrane potential in primary afferent terminals.Dnepropetrovskii State University. Translated from Neirofiziologiya, Vol. 14, No. 4, pp. 386–391, July–August, 1982.  相似文献   

19.
Nerve fibers which respond to illumination of the sixth abdominal ganglion were isolated by fine dissection from connectives at different levels in the abdominal nerve cord of the crayfish. Only a single photosensitive neuron is found in each connective; its morphological position and pattern of peripheral connections are quite constant from preparation to preparation. These cells are "primary" photoreceptor elements by the following criteria: (1) production of a graded depolarization upon illumination and (2) resetting of the sensory rhythm by interpolated antidromic impulses. They are also secondary interneurons integrating mechanical stimuli which originate from appendages of the tail. Volleys in ipsilateral afferent nerves produce short-latency graded excitatory postsynaptic potentials which initiate discharge of one or two impulses; there is also a higher threshold inhibitory pathway of longer latency and duration. Contralateral afferents mediate only inhibition. Both inhibitory pathways are effective against both spontaneous and evoked discharges. In the dark, spontaneous impulses arise at frequencies between 5 and 15 per second with fairly constant intervals if afferent roots are cut. Since this discharge rhythm is reset by antidromic or orthodromic impulses, it is concluded that an endogenous pacemaker potential is involved. It is postulated that the increase in discharge frequency caused by illumination increases the probability that an inhibitory signal of peripheral origin will be detected.  相似文献   

20.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号