首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Extracellular and intracellular responses of 183 neurons in the primary projection area of the somatosensory cortex to electrical and tactile stimulation of the skin on the contralateral fore limb and to stimulation of the ventro-posterolateral thalamic nucleus of the ipsilateral hemisphere were studied in chronic experiments on cats. Spike responses to afferent stimuli are subdivided into three types: initial with a latent period of under 60 msec; initial followed by late responses with a latent period of over 60 msec; late with a latent period of over 60 msec. In addition another group of neurons responding to peripheral stimuli in the interval between the initial and the late response was identified. In nearly all cases the initial responses to peripheral stimulation had the form of a series of spikes, unlike responses to thalamic stimulation. It is concluded from the durations of the latent periods of these responses that about 70% of neurons in the primary projection area are activated mono- and disynaptically in response to peripheral stimulation; consequently, the intracortical spread of excitation in this zone is restricted.  相似文献   

3.
缰核痛相关神经元对伤害性刺激和吗啡的反应   总被引:2,自引:0,他引:2  
目的:观察缰核痛相关神经元对经典镇痛药吗啡的反应,了解缰核的痛觉属性.方法:实验在浅麻醉下的成年大鼠进行.通过脑室插管微量注射,或经五管微电极电泳吗啡、纳络酮、八肽胆囊收缩素(CCK-8)等,并记录缰核内痛相关神经元的单位放电.结果:在内侧缰核、外侧缰核记录的痛相关神经元放电,又可分为痛兴奋性神经元和痛抑制性神经元.在缰核微电泳吗啡后,痛兴奋性神经元以抑制反应为主,痛抑制性神经元以兴奋反应为主.微电泳纳洛酮可以翻转吗啡对缰核的作用.在吗啡耐受大鼠腹腔注射吗啡10 mg/kg,LHb痛相关神经元表现为镇痛效应的数量远大于MHb痛相关神经元的,表明外侧缰核受吗啡的作用程度高于内侧缰核.对吗啡耐受大鼠脑室注入CCK拮抗剂后,再由腹腔注射吗啡,可减弱对吗啡的耐受程度.反之,在腹腔注射吗啡(10 mg/kg)10 min后,侧脑室注射CCK-8(15 ng/10μl),CCK-8可拮抗吗啡对LHb的镇痛作用,但对MHb的拮抗作用不明显.结论:缰核的痛兴奋性神经元和痛抑制性神经元对伤害性(痛)刺激敏感而不易发生适应.其中外侧缰核神经元对吗啡的敏感性高于内侧缰核神经元.  相似文献   

4.
5.
Summary Most of the auditory neurons in the ventral nerve cord ofLocusta migratoria carry information not only from the tympanal organs but also from the subgenual organs (vibration sensors). Six of the eight neuron types studied electrophysiologically respond to at least these two modalities. Artificial sounds (white noise and pure tones varying in frequency and intensity) and sinusoidal vibration (200 Hz with an acceleration of 15.8 cm/s2 or 2000 Hz and 87 cm/s2) were used as stimuli.Complex excitatory and/or inhibitory interactions of the signals from both tympanal organs form the discharge patterns of auditory ventral-cord neurons in response to stimulation with air-borne sound. Normally the input of the ipsilateral sense organ dominates. The response patterns of these same neurons elicited by vibration stimuli are formed differently, as follows: (1) the sensory inputs of all subgenual organs are integrated in the responses of the ventral-cord neurons; in a single neuron they have either excitatory or inhibitory effects, but not both. (2) The more legs vibrated, the larger is the response. (3) The subgenual organs in the middle legs are most effective, those in the hind legs least so. (4) Ipsilateral vibration has more effect than contralateral.The six auditory neurons react to vibration combined with air-borne sound in different ways. The B neuron is the only one inhibited by vibration stimuli. The G neuron has been studied more intensively; because its anatomical arrangement and the location of the endings of the subgenual receptor fibers are known, it could be inferred from effects of transection of the connectives that interneurons are interposed between receptor cells and the G neuron.Part of the program Sonderforschungsbereich 114 (Bionach) Bochum, under the auspices of the Deutsche Forschungsgemeinschaft, with the support of the Slovenic Research Society (RSS)  相似文献   

6.
7.
Responses of neurons of the medial (MPO) and lateral (LPO) preoptic region (RPO) and adjacent hypothalamic structures to serial stimuli (6–300/sec) of the prefrontal (area 8) and cingulate (area 24) cortex, piriform lobe (periamygdaloid cortex — RPA), and hippocampus (area CA3) were investigated in acute experiments on cats under ketamine anesthesia. Four main types of responses were found: excitatory, inhibitory, excitatory on-off effect, and inhibitory on-off effect. With the use of stimuli with increasing frequencies, the direction of the response remained constant, only its intensity changed. Neurons responding to presentation of serial stimuli were localized mainly in the central part of the MPO and basal part of the LPO, where the most pronounced foci of convergence were observed. During serial stimulation of cortical structures, inhibitory responses occurred considerably more often than excitatory (ratio 3.4:1). The presence of a gradient of inhibition was established from new to old (in a phylogenetic respect) brain formations in a number of stimulated structures. In the case of stimulating the neocortex (proreal gyrus), the predominance of inhibitory responses over excitatory was minimum (1.7:1); it increased (1.9:1) in the case of stimulating the intermediate cortex (cingulate gyrus), still more (4.5:1) under conditions of stimulating the paleocortex (periamygdaloid cortex), and in the case of stimulating the archicortex (10.2:1).A. M. Gorky Medical Institute, Ukrainian Ministry of Health, Donetsk. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 720–731, November–December, 1991.  相似文献   

8.
9.
Responses of 146 spontaneously active neurons of the reticular nucleus (R) and of 98 neurons of the ventral anterior (VA) nucleus of the thalamus to electrical stimulation of the skin of the footpads, to flashes, and to clicks were studied in experiments on cats immobilized with D-tubocurarine or myorelaxin. Stimulation of the contralateral forelimb was the most effective: 24.9% of R neurons and 31.3% of VA neurons responded to this stimulation. A response to clicks was observed in only 4.4% of R neurons and 2.4% of VA neurons. Nearly all responding neurons did so by phasic (one spike or a group of spikes) or tonic excitation. Depression of spontaneous activity was observed only in response to electrical stimulation of the skin. Depending on the site of stimulation, it was observed in 2.6–4.3% of R neurons and 1.7–2.1% of VA neurons tested. The latent period of the phasic responses of most neurons was 6–64 msec to electrical stimulation of the contralateral forelimb, 11–43 msec in response to stimulation of the hindlimb on the same side, 10–60 msec to photic and 8–60 msec to acoustic stimulation. Depending on the character of stimulation, 75.1–95.6% of R neurons and 68.7–97.6% of VA cells did not respond at all to the stimuli used. Of the total number of cells tested against the whole range of stimuli, 25% of R neurons and 47% of VA neurons responded to stimulation of different limbs, whereas 16% of R neurons and 22% of VA cells responded to stimuli of different sensory modalities. The functional role of the convergence revealed in these experiments is to inhibit (or, less frequently, to facilitate) the response of a neuron to a testing stimulus during the 40–70 msec after conditioning stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 6, pp. 563–571, November–December, 1975.  相似文献   

10.
The responses of the rabbit's visual cortical neurons to paired and rhythmic punctiform stimulation of their receptive fields were compared with responses to diffuse photic stimuli and the electric stimulation of the optic nerve. Diffuse photic and electric stimuli evoke a short-lasting initial activation of a neuron, followed by an inhibitory phase, during which the response to repetitive stimulation is suppressed. By contrast, localized stimulation of the neuron's receptive field with a spot of light produces an intensive and longer-lasting activation which is not followed by profound inhibition. Fusion of the responses to paired and rhythmic localized stimuli is therefore possible when the intervals between stimuli are brief enough. Rhythmic stimulation is capable of evoking sustained activation of a neuron during the entire duration of light flicker. During stimulation of a single point of the receptive field such prolonged activation can take place only within a limited range of stimulation frequencies (up to 15/sec), while higher frequencies evoke responses to the onset and offset of sequences of light flashes only. If, however, rhythmic stimuli alternate between the various points of a receptive field, prolonged neuronal activation is observed with any frequency of stimulation.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 252–259, May–June, 1971.  相似文献   

11.
InManduca sexta, large tangential cells connect the medulla via the lobula valley (LoV) tract to the midbrain and the contralateral medulla. Tract neurons have been stained and recorded to determine their responses to optomotor stimulation. Neurons in the LoV-tract comprise a physiologically and anatomically heterogeneous population:
  1. Motion insensitive medulla tangential (Mt) neurons arise from cell bodies in the ventral rind. Heterolateral cells arborize massively in both medullae and one or both halves of the midbrain. Mt-neurons respond to changes in light intensity. Physiological and anatomical evidence argues for their monocularity and transmission from the medulla on the side of the soma to the central brain and the contralateral medulla.
  2. Motion sensitive neurons with cell bodies behind the protocerebral bridge connect the midbrain to the ipsior contralateral medulla. Direction-selective responses are characterized by excitation to motion in the preferred and inhibition in the opposite direction with maxima either in a horizontal or vertical direction. Peak values appear at contrast frequencies of appr. 3/s. The results suggest that these neurons are binocular and relay information from the midbrain to the medulla. They have been labelled as centrifugal medulla tangential (cMt) neurons.
The possible roles for tract neurons in visually guided behaviour are discussed.  相似文献   

12.
13.
Using alert cats we have investigated the impulse reactions (IR) of corticocerebral neurons (areas 3, 4, 5) in response to electrical stimulation of the contralateral limb (ESL). The short-latency impulse reactions of neurons of an excitatory nature, which were recorded in the animals in the state of rest, decreased considerably in intensity or could not be detected at all after preliminary (after 1.0–1.5 sec) action of a light flash or sound stimulation during the initial periods of their application. When the animals showed a defense or food motivation we observed, apart from a change in the background activity, evoked by the action of the ESL, more complex rearrangements of the impulse reaction, up to the appearance of the periods of inhibition of the impulse activity. Conversely, combined application of ESL with a stimulus of the same modality, did not prevent development of the initially isolated reaction even in cases of decrease in the ESL to a subthreshold value. A subthreshold stimulus "intensified" in this way can become important for the animal and be used as a signal stimulus during the development of the conditioned defense reflex in the animal. We assume that the nature of the reactions of the same neurons to a simple somatic stimulation is not constant. This is due to a preliminary tuning of the analyzers of the animal to the perception of stimuli of a certain modality.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 27–37, January–February, 1992.  相似文献   

14.
The processes that lead from detection of chemicals, transduction, and coding with the appropriate message to initiate ingestion of a palatable meal or to reject a potentially noxious substance are poorly understood in vertebrates owing to the complex organization of the taste system. As a first step in elucidating the cellular basis of the behavioral differences elicited by appetitive stimuli and bitter compounds, we recorded from the afferent nerves conveying peripheral chemosensory information to the CNS in the head of the leech, Hirudo medicinalis. Superfusion of the chemosensory region of the lip of Hirudo with a mixture of NaCl (150 mM) and arginine (1 mM), an appetitive solution that elicits ingestion, increased the neuronal activity in the afferent cephalic nerves, for example (Zhang X, Wilson RJ, Li Y, Kleinhaus AL. 2000. Chemical and thermal stimuli have short‐lived effects on the Retzius cell in the medicinal leech. J Neurobiol 43:304–311.). In the present paper we show that superfusing the lip with quinine or denatonium reduced the basal neural activity in the afferents. Furthermore, these bitter substances in the appetitive solution counteracted the increased activity the appetitive solution evoked in the cephalic nerves. Thus, the neural activity evoked by the application of appetitive and aversive stimuli to the chemosensory area of the lip paralleled the opposite behavioral responses to the same chemicals. The results suggest that individual leech taste cells possess receptors for both types of stimuli. Therefore, the leech may be a good model system in which to study peripheral taste events in cells that may possess multiple receptors and transduction mechanisms that interact to integrate information. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 255–263, 2001  相似文献   

15.
In chronic experiments on rabbits using extracellular recording of unit activity in hippocampal area CA1 the effects of stimulation of the subiculum, posterior cingulate cortex, and anterior and posterior nonprimary areas of the neocortex were investigated. The effects of such stimulation were compared in the intact and chronically isolated hippocampus. It is concluded from the results that direct two-way connections exist between CA1 and the subiculum. Polysynaptic influences of the subiculum on CA1 are realized through the entorhinal cortex, for they are not present in the isolated hippocampus. Influences of the neocortical areas studied on CA1 are transmitted to some extent through a relay in the subiculum. The entorhinal cortex plays no part in the realization of polysynaptic effects. The effectiveness of these influences increases with removal of the principal hippocampal afferent systems.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 315–323, May–June, 1982.  相似文献   

16.
Recent investigations have shown that three major striatal-signaling pathways (protein kinase A/DARPP-32, Akt/glycogen synthase kinase 3, and ERK) are involved in the regulation of locomotor activity by the monoaminergic neurotransmitter dopamine. Here we used dopamine transporter knock-out mice to examine which particular changes in the regulation of these cell signaling mechanisms are associated with distinct behavioral responses to psychostimulants. In normal animals, amphetamine and methylphenidate increase extracellular levels of dopamine, leading to an enhancement of locomotor activity. However, in dopamine transporter knock-out mice that display a hyperactivity phenotype resulting from a persistent hyperdopaminergic state, these drugs antagonize hyperactivity. Under basal conditions, dopamine transporter knock-out mice show enhanced striatal DARPP-32 phosphorylation, activation of ERK, and inactivation of Akt as compared with wild-type littermates. However, administration of amphetamine or methylphenidate to these mice reveals that inhibition of ERK signaling is a common determinant for the ability of these drugs to antagonize hyperactivity. In contrast, psychostimulants activate ERK and induce hyperactivity in normal animals. In hyperactive mice psychostimulant-mediated behavioral inhibition and ERK regulation are also mimicked by the serotonergic drugs fluoxetine and 5-carboxamidotryptamine, thereby revealing the involvement of serotonin-dependent inhibition of striatal ERK signaling. Furthermore, direct inhibition of the ERK signaling cascade in vivo using the MEK inhibitor SL327 recapitulates the actions of psychostimulants in hyperactive mice and prevents the locomotor-enhancing effects of amphetamine in normal animals. These data suggest that the inhibitory action of psychostimulants on dopamine-dependent hyperactivity results from altered regulation of striatal ERK signaling. In addition, these results illustrate how altered homeostatic state of neurotransmission can influence in vivo signaling responses and biological actions of pharmacological agents used to manage psychiatric conditions such as Attention Deficit Hyperactivity Disorder (ADHD).  相似文献   

17.
Many neural systems are undergoing marked development over adolescence, which may heighten an animal's vulnerability to stressors. One consequence may be altered sensitivity to drugs of abuse. We previously reported that social stressors in adolescence increased behavioral sensitization to nicotine in adulthood in female, but not male, rats. Here we examined whether social stressors in adolescence alter the functioning of the hypothalamic-pituitary-adrenal (HPA) axis by examining corticosterone release in response to restraint in adulthood. To further assess effects of social stressors on behavioral sensitivity to psychostimulants, we examined locomotor activity in response to nicotine and to amphetamine. In a second set of experiments, we investigated whether the same procedure of social stressors administered in adulthood produces effects similar to that observed when administered in adolescence. Rats underwent daily 1 h isolation followed by pairing with a new cage mate on either postnatal days 33-48 (pubertal stress: PS) or days 65-80 (adult stress: AS). Three weeks later rats tested for either: (a) corticosterone levels were measured in response to restraint, or (b) locomotor sensitization to nicotine (0.25 mg/kg; 5 days) followed by an amphetamine challenge (0.5 mg/kg) 24 h later. Effects of social stressors were evident only in females. PS females had increased locomotor activity to amphetamine compared to controls, and AS females had increased corticosterone release compared to controls. No effect of the social stressors was found in males at either age except for reduced weight gain during the stress procedure. Thus, females are more susceptible to the enduring effects of these moderate social stressors than are males. However, in terms of behavioral sensitivity to drugs of abuse, females may be more susceptible to stressors during adolescence than adulthood, although the reverse appears to be true for HPA function.  相似文献   

18.
Lei Q  Yan JQ  Shi JH  Yang XJ  Chen K 《生理学报》2007,59(3):260-266
本研究以轻度麻醉的大鼠为对象,应用细胞外微电极记录技术,观察并分析了脑桥臂旁核抑制性味觉神经元的自发活动及其对NaCl、HCl、盐酸奎宁(quinine HCl,QHCl))和蔗糖等四种基本味觉刺激的反应。共分析了18个具有自发活动的抑制性味觉神经元,自发放电频率分布在0.2~5.5Hz之间,平均放电频率(2.15±0.31)Hz。18个神经元中,1个神经元对单一味觉刺激呈抑制性反应,其余17个神经元对两种或两种以上的基本味觉刺激发生抑制性反应,且抑制具有潜伏期短、持续时间较长等特征。抑制持续时间5~80S,部分神经元表现为后抑制效应。根据神经元对四种基本味觉刺激呈抑制性反应的程度,将其分为NaCl优势神经元(n=8),HCl优势神经元(n=3),QHCl优势神经元n=3)和蔗糖优势神经元n=4)。其中NaCl优势神经元的反应谐宽最高(0.945)。这些神经元对欣快或厌恶刺激的区别能力较低。结果提示,在脑桥臂旁核存在对味觉刺激起抑制性反应的神经元,这些味觉神经元可能在味觉的调制及对欣快和厌恶刺激的编码中发挥重要的作用。  相似文献   

19.
20.
Reactions of command neurones for avoidance behaviour to food were investigated in hungry and satiated snails in "CNS-chemoreceptor" preparations, in which hemolymph was washed out by saline. Neuronal responses in hungry animal preparations differed significantly from responses in satiated animals preparations. Perfusion of hungry animal preparations with hemolymph of satiated animals changed significantly the responses of command neurones for avoidance behaviour. These responses resembled the reactions of the same neurones to food after aversive conditioning to food of hungry snails. The role of humoral factor in learning is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号