首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interneurons of the lumbar division of the cat spinal cord responding after a short latent period with intensive excitation to stimulation of the medullary pyramids and red nucleus but not responding (or excited after a long latent period) to stimulation of peripheral nerves were investigated by microelectrode recording. Most of these neurons, located in the lateral zones of Rexed's laminae IV–VII of the gray matter, were identified as propriospinal cells sending axons into the dorsolateral funiculus of the white matter (mean velocity of antidromic conduction in the group 34.6 m/sec). Marked convergence of corticofugal and rubrofugal excitatory influences was found on the overwhelming majority of neurons. Some neurons were activated monosynaptically by fast-conducting fibers of both descending systems. The minimal and mean values of the latent periods of the pyramidal EPSPs for the neurons tested were 4.5 and 6.28 msec, and for the rubral EPSPs 3.3 and 4.94 msec respectively. A distinguishing feature of the activation of these neurons is the intensive potentiation of their synaptic action on the arrival of a series of corticofugal and rubrofugal waves.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 5, pp. 489–500, September–October, 1972.  相似文献   

2.
3.
Quantitative estimates of the density of distribution of interneurons forming descending intersegmental connections in the cat spinal cord were obtained. Neurons were labeled by retrograde axonal transport of horseradish peroxidase injected unilaterally at different segmental levels. The mean number of labeled units per section 50 µ thick, in a given zone, was used as the measure of density. The density of distribution of the propriospinal neurons forming the longest tracts between the cervical and lumbosacral regions of the cord was found to be about half the density of distribution of neurons with short (not more than two segments) axons, and to be several times less than the corresponding value for neurons with axons of intermediate length. No marked local peaks of density of distribution of long-axon neurons were found at the level of the brachial enlargement. The number of neurons with crossed axons in most segments was close to half of the total number of propriospinal units. Zones of transverse section of the spinal cord with maximal concentrations of neurons forming direct and crossed propriospinal tracts of different lengths were determined at different levels. Correlation between the quantitative composition of propriospinal neuron populations with characteristics of influences transmitted by these populations is examined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 96–105, January–February, 1984.  相似文献   

4.
5.
6.
The characteristics of conduction of the excitation wave along propriospinal fibers of the dorsolateral tract of the spinal cord were studied in cats anesthetized with pentobarbital. At a preliminary operation, 10–18 days beforehand, lateral hemisection of the spinal cord was performed, cranially in the lumbar division and caudally and cranially in the cervical division to the segments to be studied, leading to degeneration of the long descending and ascending fibers. During stimulation, the dorsolateral tract developed a composite response consisting of a positive-negative wave recorded up to 60–65 mm (4 or 5 segments) from the point of stimulation. The mean conduction velocity of this wave in the lumbar division was 37.9 m/sec compared with 44.5 m/sec in the cervical division. From its properties as a whole this wave can be regarded as the result of excitation of relatively fast-conducting propriospinal fibers of the dorsolateral tract. If the strength of stimulation was increased, late components began to appear in the response. These were evidently connected with excitation of thinner propriospinal fibers and synaptic activation of other other groups of spinal neurons.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 54–60, January–February, 1973.  相似文献   

7.
The distribution of propriospinal fiber terminals of the lateral funiculus in the lumbar segments of the cat spinal cord was examined by light and electron microscopy. For the selective demonstration of these terminals, preliminary hemisectioning of the brain at the boundary of the thoracic and lumbar segment, eliminating all the long descending pathways, and subsequent hemisectioning or sectioning of the lateral funiculus at the level of the third lumbar segment was carried out. It was established by staining the degenerating endings (by the Fink—Heimer method) that the terminals of the descending and ascending propriospinal fibers, which form part of the lateral and ventral funiculi, are located mainly in the lateral and medial parts of lamina VII and the dorsal section of lamina VIII, according to Rexed, as well as in the regions adjacent to the dorsolateral and ventromedial motor nuclei. A large number of these terminals is found in the corresponding regions of the gray matter on the contralateral side of the brain. Since, in the case of selective injury of the lateral funiculus the number of degenerating terminals in lamina VIII is noticeably decreased, it can be assumed that the propriospinal neuron terminals of the ventral funiculus are concentrated mainly in lamina VIII. The axons of the propriospinal neurons extend over several segments both in the ascending and in the descending directions. It was shown in an electron microscopic study of the regions in which most of the propriospinal terminals are located that these terminals are of an axo-dendritic nature and terminate in the dendrites of both inter- and motor neurons. Their degeneration can be of the "light" or "dark" type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 401–407, July–August, 1971.  相似文献   

8.
Responses of motoneurons and interneurons of the cervical enlargement of the cat spinal cord were studied by a microelectrode technique during selective stimulation of propriospinal fibers of the dorsolateral tract of the lateral white column. The long descending and ascending pathways were blocked by preliminary (10–16 days earlier) hemisection of the spinal cord cranially and caudally to the segments studied. Stimulation of the dorsolateral tract at a distance of 15–25 mm from the site of recording evoked complex postsynaptic potentials consisting of several successive waves in the motoneurons. The character of the PSPs was not clearly linked with the function of the motoneurons. By their latent periods the components of the PSPs could be placed in three groups. The "primary" components were reproduced in response to stimulation at 50–100/sec whereas the "secondary" and "tertiary" components were weakened or blocked. It is postulated that the "primary" components are evoked through monosynaptic connections between propriospinal fibers of the dorsolateral tract and motoneurons of the forelimb muscles, while the late components are evoked through polysynaptic pathways, including segmental interneurons. Many of these interneurons, located in the ventral horn and intermediate zone, were strongly excited during stimulation of the dorsolateral tract.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 61–69, January–February, 1973.  相似文献   

9.
The distribution and ultrastructure of primary afferent terminals in the gray matter of the cervical and lumbar regions of the cat spinal cord were studied by the experimental degeneration method of Fink and Heimer. Most preterminals of primary afferents were shown to be concentrated in the region of the intermediate nucleus of Cajal (central part of Rexed's laminae VI–VII), in the substantial gelatinosa (laminae II–III), and in the nucleus proprius of the dorsal horn (central and medial parts of lamina IV). Fewer are found in the region of the motor nuclei. The number of degenerating axon terminals in the lateral parts of laminae IV and V differed: 31.5 and 0.4% respectively of all axon terminals. Many terminals of primary afferents in lamina IV contribute to the formation of glomerular structures in which they exist as terminals of S-type forming axo-axonal connections with other terminals. These results are in agreement with electrophysiological data to show that interneurons in different parts of the base of the dorsal horn differ significantly in the relative numbers of synaptic inputs formed by peripheral afferents and descending systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 406–414, July–August, 1973.  相似文献   

10.
Summary An electron-microscopic study has been made of the glial cells in the developing lateral funiculus of the cervical spinal cord in fetal rhesus monkeys. The various macroglial cell types, their precursor cells, and microglia are discussed in detail. An astrocytic lineage is proposed in which glioblasts present in the lateral funiculus give rise to astroblasts that then develop into mature astrocytes. Oligoblasts apparently migrate into the lateral funiculus as such and develop into active oligocytes. The active oligocytes become most predominant during the initial stages of myelinogenesis and are in direct continuity with developing myelin. The active oligocytes develop into mature oligocytes after myelination is completed. Microglia cells are present throughout development as three forms; resting microglia, globose microglia, and active microglia. The globose and active microglia predominates at specific times early in development when degeneration of apparent neuronal processes is taking place. The microglia cells are characterized by dense nuclear chromatin clumps, lipid inclusion bodies, dense vesicles, and, often, intracellular debris.Supported in part by a Parson Trust Endowment Research Grant at the University of South Dakota School of Medicine. The author gratefully acknowledges the help of Dr. Ronald DiGiacomo who was responsible for the surgery involved in the fetal deliveries.  相似文献   

11.
12.
Experiments on anesthetized cats with partial transection of the spinal cord showed that reticulo-spinal fibers in the ventral part of the lateral funiculus participate in the inhibition of polysynaptic reflexes evoked by stimulation of the ipsi- and contralateral reticular formation. The reticulo-fugal wave in the ventrolateral funiculus evoked comparatively short (up to 70 msec) IPSPs in some motoneurons of the internal intercostal nerve investigated and at the same time evoked prolonged (up to 500 msec) inhibition of IPSPs caused by activation of high-threshold segmental afferents. This wave also led to the appearance of IPSPs in 14 of 91 (15.5 %) thoracic spinal interneurons studied. The duration of these IPSPs did not exceed 100 msec; meanwhile, segment excitatory responses of 21 of 43 interneurons remained partly suppressed for 120–500 msec. It is concluded that the inhibitory action of the lateral reticulo-spinal system on segmental reflexes is due to several synaptic mechanisms, some of them unconnected with hyperpolarization of spinal neurons. The possible types of mechanisms of this inhibition are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 162–172, March–April, 1978.  相似文献   

13.

Background  

The diaphragm has sensory innervation from mechanoreceptors with myelinated axons entering the spinal cord via the phrenic nerve that project to the thalamus and somatosensory cortex. It was hypothesized that phrenic nerve afferent (PnA) projection to the central nervous system is via the spinal dorsal column pathway.  相似文献   

14.
Synaptic responses evoked in propriospinal neurons of the upper lumbar segments (L3–L4) by reticulo-, vestibulo-, and corticospinal impulses were studied in experiments on cats and monkeys. Propriospinal cells, identified by antidromic stimulation, were stained with Procion red, so that they could be localized in the different zones of the ventral horn. Monosynaptic reticular and vestibular excitatory influences were discovered in cats; convergence of these influences on the same neurons was demonstrated. In monkeys bulbospinal monosynaptic effects were supplemented by monosynaptic influences arriving from the motor cortex; convergence of monosynaptic excitatory influences from all supraspinal sources studied was found on some propriospinal neurons. The propriospinal neurons studied also had synaptic inputs from primary afferents.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 177–184, March–April, 1977.  相似文献   

15.
The ultrastructure of the lateral part of laminae VI and VII of the spinal gray matter (the location of most of the terminal branches of the rubrospinal tract) was investigated in cats under normal conditions and at various times after destruction of the red nucleus. The neuron population of this region is formed by cells fairly homogeneous in size (25–40µ). The structure of the dendritic profiles is simple and they carry only infrequent and small membranous appendages. Most synapses are axo-dendritic. The axon terminals are divided into three groups depending on the size and shape of the synaptic vesicles and the presence of post-synaptic specialization. A few glomerular axon terminals contacting with various structures are found. Small axon terminals located chiefly on dendrites and their appendages show degenerative changes 1–8 days after destruction of the red nucleus. As a rule the degenerating terminals contain round synaptic vesicles. The glomerular terminals do not degenerate.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 6, No. 6, pp. 610–618, November–December, 1974.  相似文献   

16.
The neuronal organization of the lateral basilar region (LBR) of gray matter in the cervical portion of the cat spinal cord was studied by light and electron microscopy. It was found that LBR neurons form a homogeneous group with regard to the size of their soma. The ordinary pale ultrastructure of the cytoplasm is found in 96.8% of neurons examined. The ultrastructure of the cytoplasm of the small cells (3.2%) is dark and their matrix has high electron density. Most endings on LBR neurons have spherical vesicles (of the S-type). Endings with flattened vesicles (F-type) are next in order of numerical frequency. In some endings, besides the ordinary synaptic vesicles, there are other vesicles with an osmiophilic center, and endings with a dense matrix and numerous spherical vesicles. Endings of the F-type are relatively more numerous on dendrites of LBR neurons than on their soma. Axodendritic synapses form 87.8% of the synaptic connections of the LBR, and axo-somatic synapses 9.2%. The few axo-axonal synapses are formed by small endings with small synaptic vesicles and large plaques with spherical vesicles. The latter frequently make contact with several dendrites simultaneously. The functional role of the various neuronal structures of LBR in the transmission of descending and afferent influences is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 3, pp. 296–302, May–June, 1972.  相似文献   

17.
The early myelination of the dorsal funiculus at the level of the 4th cervical spinal cord was ultrastructurally studied in the one-day-old mouse. It was found that the fibers were mainly unmyelinated. However, some early myelinated fibers were scattered among unmyelinated fibers. In the initial stage of the myelination, the axon was partially contracted by a piece of cytoplasmic process of the oligodendroglial cell. The two lips of the oligodendroglial process then extended and converged, enwrapping the axon completely and forming the first contact point. With the anchorage of that contact point, the two lips of the process became elongated and enfolded by each other, and produced the internal and external tongues of the future myelin sheath. More contact points were formed at a regular interval by the regional fusion of the two external surface layers of the opposed cytoplasmic membranes of adjacent tongue processes. With the advanced bidirectional spiralization of the two tongue processes, many contact points were found between the adjacent lamellae of the concentrically arranged oligodendroglial process; simultaneously, the cleft between the neighboring contact points disappeared and formed the initial sites of the intraperiod line. During the early myelination, one single axon ensheathed concentrically by two different oligodendroglial processes as well as several axons enwrapped by a continuous spiral myelin sheath of one oligodendroglial cell were frequently observed. The cross-sectional areas of unmyelinated axons varied from 0.01 to 0.2 micron 2, with a median of 0.07 micron 2; whereas, that of promyelinated axons ranged from 0.09 to 1.4 micron 2, with a median at 0.61 micron 2. These data support the suggestion that the axon calibre is a critical factor for the initiation of central myelination.  相似文献   

18.
19.
After stereotaxis lexions in the nucleus reticularis gigantocellularis of the modulla oblongata and nucleus reticularis pontis caudalis, the distribution of degenerating nerve fibers in the lumbar segments of the spinal cord has been studied by silver impregnation methods of Nauta and Fink-Heimer. Degenerating reticulo-spinal fibers and fragments of axonal terminations were found in the area of n. motorius ventro-medialis and n. motorius ventro-lateralis, as well as partly in n. motorius dorso-lateralis close to motoneurons and their dendrites. Mainly they pass into layers VII and VIII. This fact indicates the existence of direct-reticulo-motoneuronal synaptic connections in rats, which coincides with electrophysiological data.  相似文献   

20.
Synaptic responses of different functional groups of interneurons in segments T10 and T11 to stimulation of the ipsilateral and contralateral medullary reticular formation were investigated in anesthetized cats with only the ipsilateral lateral funiculus remaining intact. Activation of reticulospinal fibers of the lateral funiculus with conduction velocities of 30–100 m/sec was shown to induce short-latency and, in particular, monosynptic EPSPs in all types of cells tested: in interneurons excited by group Ia muscle afferents, in cells activated only by high-threshold cutaneous and muscle afferents (afferents of the flexor reflex), in cells activated mainly by descending systems, and, to a lesser degree, in neurons connected with low-threshold cutaneous afferents. These cell populations are located mainly in the central and lateral parts of Rexed's lamina VII. Most neurons in laminae I–V of the dorsal horn, except six cells located in the superficial layers of the dorsal horn, received no reticulofugal influences. The functional organization of connections of the lateral reticulospinal tract with spinal neurons is discussed and compared with the analogous organization of the medial reticulospinal tract, and also of the "lateral" (cortico- and rubrospinal) descending systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 150–161, March–April, 1978.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号