首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Modified thrombin-binding aptamers carrying 2′-deoxyguanine (dG) residues with locked North- or South-bicyclo[3.1.0]hexane pseudosugars were synthesized. Individual 2′-deoxyguanosines at positions dG5, dG10, dG14 and dG15 of the aptamer were replaced by these analogues where the North/anti and South/syn conformational states were confined. It was found that the global structure of the DNA aptamer was, for the most part, very accommodating. The substitution at positions 5, 10 and 14 with a locked South/syn-dG nucleoside produced aptamers with the same stability and global structure as the innate, unmodified one. Replacing position 15 with the same South/syn-dG nucleoside induced a strong destabilization of the aptamer, while the antipodal North/anti-dG nucleoside was less destabilizing. Remarkably, the insertion of a North/anti-dG nucleoside at position 14, where both pseudosugar conformation and glycosyl torsion angle are opposite with respect to the native structure, led to the complete disruption of the G-tetraplex structure as detected by NMR and confirmed by extensive molecular dynamics simulations. We conclude that conformationally locked bicyclo[3.1.0]hexane nucleosides appear to be excellent tools for studying the role of key conformational parameters that are critical for the formation of a stable, antiparallel G-tetrad DNA structures.  相似文献   

2.
DNA dodecamers modified with nucleotide building blocks based on a bicyclo[3.1.0]hexane system that effectively “locks” the ribose template into an RNA-like or “North” (N) conformation were analyzed by various biophysical techniques including high field nuclear magnetic resonance (NMR). Replacement of either one or both of the center thymidines in the Dickerson Drew dodecamer (CGCGAAT*T*CGCG) caused a progressive shift in the bending propensity of the double helix as shown by a newly developed rapid technique that compares the residual dipolar coupling (RDC) values of the modified duplexes with those previously determined for the native DNA.  相似文献   

3.
Oligodeoxyribonucleotides containing pseudorotationally locked sites derived from bicyclo[3.1.0]hexane pseudosugars have been synthesized using adenosine, thymidine and abasic versions of North- and South-methanocarba nucleosides. The reaction conditions for coupling and oxidation steps of oligonucleotide synthesis have been investigated and optimized to allow efficient and facile solid-phase synthesis using phosphoramidite chemistry. Our studies demonstrate that the use of iodine for P(III) to P(V) oxidation leads to strand cleavage at the sites where the pseudosugar is North. In contrast, the same cleavage reaction was not observed in the case of South pseudosugars. Iodine oxidation generates a 5′-phosphate oligonucleotide fragment on the resin and releases the North pseudosugar into the solution. This side reaction, which is responsible for the extremely low yields observed for the incorporation of the North pseudosugar analogs, has been studied in detail and can be easily overcome by replacing iodine with t-butylhydroperoxide as oxidant.  相似文献   

4.
DNA dodecamers modified with nucleotide building blocks based on a bicyclo[3. 1.0]hexane system that effectively locks the ribose template into an RNA-like or North (N) conformation were analyzed by various biophysical techniques including high field nuclear magnetic resonance (NMR). Replacement of either one or both of the center thymidines in the Dickerson Drew dodecamer (CGCGAAT*T*CGCG) caused a progressive shift in the bending propensity of the double helix as shown by a newly developed rapid technique that compares the residual dipolar coupling (RDC) values of the modified duplexes with those previously determined for the native DNA.  相似文献   

5.
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to the 2′-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2′-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2′-F-NMC. Finally, the 5′-triphosphate of 2′-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.  相似文献   

6.
The synthesis of oligonucleotides (ODNs) containing 5-(N-aminohexyl)carbamoyl-2′-O-methyluridine (D) is described, and thermal stability and resistance to enzymatic hydrolysis of the ODNs are compared with ODNs containing 5-(N-aminohexyl)carbamoyl-2′-deoxyuridine (H). The ODNs containing D and the complementary RNA demonstrated a duplex thermal stabilization of 0.4–3.9°C per modification depending on the position and the number, while the ODNs containing H with the RNA showed slightly less effective thermal stabilization. Further more, the ODNs containing D were found to be more resistant to nucleolytic hydrolysis, not only by snake venom phosphodiesterase (SVPD; a 3′-exonuclease) but also by DNase I (an endonuclease). The half-life of the 17mer containing five molecules of D against nucleolytic hydrolysis by SVPD was 240 times greater than the unmodified 17mer ODN, which is 1.8 times greater than the ODN containing 5Hs in the same sequence. Against DNase I, the same ODN containing 5Ds was 24 times greater stable than the unmodified 17mer and 15 times more stable than the ODN containing 5Hs. We also examined whether the duplexes formed by the ODNs containing D and the complementary RNAs could be a substrate of Escherichia coli RNase H. It was revealed that a minimum of five contiguous unmodified 2′-deoxyribonucleosides between Ds was required to constitute a substrate of E.coli RNase H. Thus, the ODN with Ds and at least five contiguous unmodified 2′-deoxyribonucleosides between Ds was found to be a candidate for a novel antisense molecule.  相似文献   

7.
Replication of DNA containing 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG) gives rise to G → T transversions. The syn-isomer of the lesion directs misincorporation of 2′-deoxyadenosine (dA) opposite it. We investigated the role of the 2-amino substituent on duplex thermal stability and in replication using 7,8-dihydro-8-oxo-2′-deoxyinosine (OxodI). Oligonucleotides containing OxodI at defined sites were chemically synthesized via solid phase synthesis. Translesion incorporation opposite OxodI was compared with 7,8-dihydro-8-oxo-2′-deoxyguanosine (OxodG), 2′-deoxyinosine (dI) and 2′-deoxyguanosine (dG) in otherwise identical templates. The Klenow exo fragment of Escherichia coli DNA polymerase I incorporated 2′-deoxyadenosine (dA) six times more frequently than 2′-deoxycytidine (dC) opposite OxodI. Preferential translesion incorporation of dA was unique to OxodI. UV-melting experiments revealed that DNA containing OxodI opposite dA is more stable than when the modified nucleotide is opposed by dC. These data suggest that while duplex DNA accommodates the 2-amino group in syn-OxodG, this substituent is thermally destabilizing and does not provide a kinetic inducement for replication by Klenow exo.  相似文献   

8.
Abstract

A new chiral synthesis of the pseudosugar synthon (1R,2S,4R,5S)-1-[(benzyloxy)methyl]-2-tert-butyloxy-4-hydroxybicyclo[3.1.0]hexane (12) is reported. This compound was used as a template for the construction of carbocyclic nucleoside 4, a conformationally rigid analogue of 2′-deoxyaristeromycin. The X-ray structure and 1H NMR analysis confirmed the exclusive North [2′-exo (2E)] conformation of 4 which is vastly different from that of other non-rigid carbocyclic nucleosides. Compound 4 showed good in vitro antiviral activity against human cytomegalovirus and EBV with minimal cytotoxicity.

  相似文献   

9.
Pallan PS  Marquez VE  Egli M 《Biochemistry》2012,51(13):2639-2641
Incorporation of a bicyclo[3.1.0]hexane scaffold into the nucleoside sugar was devised to lock the embedded cyclopentane ring in conformations that mimic the furanose North and South sugar puckers. To analyze the effects of North-methanocarba-2'-deoxythymidine (N-MCdT) on the B-form DNA, we crystallized d(CGCGAA[mcTmcT]CGCG) with two N-MCdTs. Instead of a duplex, the 12mer forms a tetraloop hairpin, whereby loop N-MCdTs adopt the C4'-exo pucker (NE; P = 50°). Thus, the bicyclic framework does not limit the pucker to the anticipated C2'-exo range (NNW; P = -18°).  相似文献   

10.
The base-pairing fidelity of oligonucleotides depends on the identity of the nucleobases involved and the position of matched or mismatched base pairs in the duplex. Nucleobases forming weak base pairs, as well as a terminal position favor mispairing. We have searched for 5′-appended acylamido caps that enhance the stability and base-pairing fidelity of oligonucleotides with a 5′-terminal 2′-deoxyadenosine residue using combinatorial synthesis and MALDI-monitored nuclease selections. This provided the residue of 4-(pyren-1-yl)butyric acid as a lead. Lead optimization gave (S)-N-(pyren-1-ylmethyl)pyrrolidine-3-phosphate as a cap that increases duplex stability and base-pairing fidelity. For the duplex of 5′-AGGTTGAC-3′ with its fully complementary target, this cap gives an increase in the UV melting point Tm of +10.9°C. The Tm is 6.3–8.3°C lower when a mismatched nucleobase faces the 5′-terminal dA residue. The optimized cap can be introduced via automated DNA synthesis. It was combined with an anthraquinone carboxylic acid residue as a cap for the 3′-terminal residue. A doubly capped dodecamer thus prepared gives a melting point decrease for double-terminal mismatches that is 5.7–5.9°C greater than that for the unmodified control duplex.  相似文献   

11.
12.
The synthesis and properties of fully modified 4′-thioDNAs, oligonucleotides consisting of 2′-deoxy-4′-thionucleosides, were examined. In addition to the known literature properties (preferable hybridization with RNA and resistance to endonuclease hydrolysis), we also observed higher resistance of 4′-thioDNA to 3′-exonuclease cleavage. Furthermore, we found that fully modified 4′-thioDNAs behaved like RNA molecules in their hybridization properties and structural aspect, at least in the case of the 4′-thioDNA duplex. This observation was confirmed by experiments using groove binders, in which a 4′-thioDNA duplex interacts with an RNA major groove binder, lividomycin A, but not with DNA groove binders, to give an increase in its thermal stability. Since a 4′-thioDNA duplex competitively inhibited the hydrolysis of an RNA duplex by RNase V1, it was not only the physical properties but also this biological data suggested that a 4′-thioDNA duplex has an RNA-like structure.  相似文献   

13.
Primer extension studies have shown that the Y-family DNA polymerase IV (Dpo4) from Sulfolobus solfataricus P2 can preferentially insert C opposite N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) [F. Boudsocq, S. Iwai, F. Hanaoka and R. Woodgate (2001) Nucleic Acids Res., 29, 4607–4616]. Our goal is to elucidate on a structural level how AAF-dG can be harbored in the Dpo4 active site opposite an incoming dCTP, using molecular modeling and molecular dynamics simulations, since AAF-dG prefers the syn glycosidic torsion. Both anti and syn conformations of the templating AAF-dG in a Dpo4 ternary complex were investigated. All four dNTPs were studied. We found that an anti glycosidic torsion with C1′-exo deoxyribose conformation allows AAF-dG to be Watson–Crick hydrogen-bonded with dCTP with modest polymerase perturbation, but other nucleotides are more distorting. The AAF is situated in the Dpo4 major groove open pocket with fluorenyl rings 3′- and acetyl 5′-directed along the modified strand, irrespective of dNTP. With AAF-dG syn, the fluorenyl rings are in the small minor groove pocket and the active site region is highly distorted. The anti-AAF-dG conformation with C1′-exo sugar pucker can explain the preferential incorporation of dC by Dpo4. Possible relevance of our new major groove structure for AAF-dG to other polymerases, lesion repair and solution conformations are discussed.  相似文献   

14.
RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA)   总被引:1,自引:1,他引:0       下载免费PDF全文
Cyclohexene nucleic acid (CeNA) forms a duplex with RNA that is more stable than a DNA–RNA duplex (ΔTm per modification: +2°C). A cyclohexenyl A nucleotide adopts a 3′-endo conformation when introduced in dsDNA. The neighbouring deoxynucleotide adopts an O4′-endo conformation. The CeNA:RNA duplex is cleaved by RNase H. The Vmax and Km of the cleavage reaction for CeNA:RNA and DNA:RNA is in the same range, although the kcat value is about 600 times lower in the case of CeNA:RNA.  相似文献   

15.
The crystal structure of an alternating RNA heptamer r(GUAUACA) has been determined to 2.0 Å resolution and refined to an Rwork of 17.1% and Rfree of 18.5% using 2797 reflections. The heptamer crystallized in the space group C222 with a unit cell of a = 25.74, b = 106.58, c = 30.26 Å and two independent strands in the asymmetric unit. Each heptamer forms a duplex with its symmetry-related strand and each duplex contains six Watson–Crick base pairs and 3′-end adenosine overhangs. Therefore, two kinds of duplex (duplex 1 and duplex 2) are formed. Duplexes 1 stack on each other forming a pseudo-continuous column, which is typical of the RNA packing mode, while duplex 2 is typical of A-DNA packing with its termini in abutting interactions. Overhang adenine residues stack within the duplexes with C3′-endo sugar pucker and C2′-endo sugar pucker in duplexes 1 and 2, respectively. A Na+ ion in the crystal lattice is water bridged to two N1 atoms of symmetry-related A7 bases.  相似文献   

16.
Abstract

The synthesis and biological evaluation of a carbovir analogue (5) built on a bicyclo[3.1.0]hex-2-enyl template is described. A conformational analysis using density functional theory at the B3LYP/6-31G* level has been carried out on the rigid pseudosugar template of 5, the cyclopentene moiety of carbovir and the bicyclo[3.1.0]hex-2-yl pseudosugars of two isomeric carbonucleosides (12 and 13) containing exo- and endo-fused cyclopropane rings. The results show that while the planar configuration of the fused cyclopentane ring of compound 5 helps retain weak anti-HIV activity, the ability of the cyclopentene ring of carbovir to easily adopt a planar or puckered conformation with little energy penalty may prove to be a crucial advantage. The bicyclo[3.1.0]hex-2-yl nucleosides 12 and 13 that were inactive against HIV exhibited stiffer resistance to having a planar, fused cyclopentane moiety.  相似文献   

17.
To investigate the mutation mechanism of purine transitions in DNA damaged with methoxyamine, a DNA dodecamer with the sequence d(CGCAAATTmo4CGCG), where mo4C is 2′-deoxy-N4-methoxycytidine, has been synthesized and the crystal structure determined by X-ray analysis. The duplex structure is similar to that of the original undamaged B-form dodecamer, indicating that the methoxylation does not affect the overall DNA conformation. Electron density maps clearly show that the two mo4C residues form Watson–Crick-type base pairs with the adenine residues of the opposite strand and that the methoxy groups of mo4C adopt the anti conformation to N3 around the C4–N4 bond. For the pair formation through hydrogen bonds the mo4C residues are in the imino tautomeric state. Together with previous work, the present work establishes that the methoxylated cytosine residue can present two alternate faces for Watson–Crick base-pairing, thanks to the aminoimino tautomerism allowed by methoxylation. Based on this property, two gene transition routes are proposed.  相似文献   

18.
The induction of conformationally restricted N-(aryl or heteroaryl)-3-azabicyclo[3.1.0]hexane derivatives at P2 region of compounds of 2-cyanopyrrolidine class was explored to develop novel DPP-IV inhibitors. The synthesis, structure–activity relationship, and selectivity against related proteases are delineated.  相似文献   

19.
We have studied hybridisation affinities and fluorescence behaviour of intercalator-modified oligonucleotides. The phosphoramidite of (S)-1-O-(4, 4′-dimethoxytriphenylmethyl)-3-O-(1-pyrenylmethyl)glycerol, an intercalating pseudo-nucleotide (IPN), was synthesised and by standard methods inserted into 7mer and 13mer oligodeoxyribonucleotides (ODNs) to generate intercalating nucleic acids (INAs). INAs showed greatly increased affinity for complementary single-stranded DNA (ssDNA), as determined by a thermal stabilisation of the formed DNA/INA duplex of up to 10.9°C per modification when the IPN was added as a dangling end and up to 6.7°C per modification when the IPN was inserted as a bulge. There was a positive stabilisation effect of the formed DNA/INA duplex on introducing a second IPN in the INA strand, when the two IPNs were separated by at least 1 bp. The effect is more pronounced the larger the separation of the two IPNs. Contrary to the enhanced affinity for ssDNA, the IPNs lower the affinity for complementary single-stranded RNA (ssRNA), giving rise to a difference in melting temperature of up to 25.8°C for two IPN insertions in an RNA/INA duplex when compared with the corresponding DNA/INA duplex. In this way INA is able to discriminate ssDNA over ssRNA with identical sequences. Fluorescence measurements show a stronger interaction of the pyrene moiety with DNA than with RNA, indicating intercalation as the stabilising factor in DNA/INA duplexes.  相似文献   

20.
Escherichia coli DNA ligase (EcoLigA) repairs 3′-OH/5′-PO4 nicks in duplex DNA via reaction of LigA with NAD+ to form a covalent LigA-(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the nick 5′-PO4 to form an AppDNA intermediate (step 2); and attack of the nick 3′-OH on AppDNA to form a 3′-5′ phosphodiester (step 3). A distinctive feature of EcoLigA is its stimulation by ammonium ion. Here we used rapid mix-quench methods to analyze the kinetic mechanism of single-turnover nick sealing by EcoLigA–AMP. For substrates with correctly base-paired 3′-OH/5′-PO4 nicks, kstep2 was fast (6.8–27 s−1) and similar to kstep3 (8.3–42 s−1). Absent ammonium, kstep2 and kstep3 were 48-fold and 16-fold slower, respectively. EcoLigA was exquisitely sensitive to 3′-OH base mispairs and 3′ N:abasic lesions, which elicited 1000- to >20000-fold decrements in kstep2. The exception was the non-canonical 3′ A:oxoG configuration, which EcoLigA accepted as correctly paired for rapid sealing. These results underscore: (i) how EcoLigA requires proper positioning of the nick 3′ nucleoside for catalysis of 5′ adenylylation; and (ii) EcoLigA''s potential to embed mutations during the repair of oxidative damage. EcoLigA was relatively tolerant of 5′-phosphate base mispairs and 5′ N:abasic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号