首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.  相似文献   

2.
Currently, the understanding of the relationships between function, amino acid sequence, and protein structure continues to represent one of the major challenges of the modern protein science. As many as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bionformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200 000 proteins from the Swiss-Prot database, each annotated with at least one of the 875 functional keywords, was described in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Using this tool, we have found that out of the 710 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (see above). The second paper of the series was devoted to the presentation of 87 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions (Vucetic, S.; Xie, H.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J. Proteome Res. 2007, 5, 1899-1916). Protein structure and functionality can be modulated by various post-translational modifications or/and as a result of binding of specific ligands. Numerous human diseases are associated with protein misfolding/misassembly/misfunctioning. This work concludes the series of papers dedicated to the functional anthology of intrinsic disorder and describes approximately 80 Swiss-Prot functional keywords that are related to ligands, post-translational modifications, and diseases possessing strong positive or negative correlation with the predicted long disordered regions in proteins.  相似文献   

3.
Molecular Recognition Features (MoRFs) are short, interaction-prone segments of protein disorder that undergo disorder-to-order transitions upon specific binding, representing a specific class of intrinsically disordered regions that exhibit molecular recognition and binding functions. MoRFs are common in various proteomes and occupy a unique structural and functional niche in which function is a direct consequence of intrinsic disorder. Example MoRFs collected from the Protein Data Bank (PDB) have been divided into three subtypes according to their structures in the bound state: alpha-MoRFs form alpha-helices, beta-MoRFs form beta-strands, and iota-MoRFs form structures without a regular pattern of backbone hydrogen bonds. These example MoRFs were indicated to be intrinsically disordered in the absence of their binding partners by several criteria. In this study, we used several geometric and physiochemical criteria to examine the properties of 62 alpha-, 20 beta-, and 176 iota-MoRF complex structures. Interface residues were examined by calculating differences in accessible surface area between the complex and isolated monomers. The compositions and physiochemical properties of MoRF and MoRF partner interface residues were compared to the interface residues of homodimers, heterodimers, and antigen-antibody complexes. Our analysis indicates that there are significant differences in residue composition and several geometric and physicochemical properties that can be used to discriminate, with a high degree of accuracy, between various interfaces in protein interaction data sets. Implications of these findings for the development of MoRF-partner interaction predictors are discussed. In addition, structural changes upon MoRF-to-partner complex formation were examined for several illustrative examples.  相似文献   

4.
The pathological process of allergies generally involves an initial activation of certain immune cells, tied to an ensuing inflammatory reaction on renewed contact with the allergen. In IgE-mediated hypersensitivity, this typically occurs in response to otherwise harmless food- or air-borne proteins. As some members of certain protein families carry special properties that make them allergenic, exploring protein allergens at the molecular level is instrumental to an improved understanding of the disease mechanisms, including the identification of relevant antigen features. For this purpose, we inspected a previously identified set of allergen representative peptides (ARPs) to scrutinize protein intrinsic disorder. The resulting study presented here focused on the association between these ARPs and protein intrinsic disorder. In addition, the connection between the disorder-enriched ARPs and UniProt functional keywords was considered. Our analysis revealed that ~ 20% of the allergen peptides are highly disordered, and that ~ 77% of ARPs are either located within disordered regions of corresponding allergenic proteins or show more disorder/flexibility than their neighbor regions. Furthermore, among the subset of allergenic proteins, ~ 70% of the predicted molecular recognition features (MoRFs that consist of short interactive disordered regions undergoing disorder-to-order transitions at interaction with binding partners) were identified as ARPs. These results suggest that intrinsic disorder and MoRFs may play functional roles in IgE-mediated allergy.  相似文献   

5.
6.

Background

Intrinsically Disordered Proteins (IDPs) lack an ordered three-dimensional structure and are enriched in various biological processes. The Molecular Recognition Features (MoRFs) are functional regions within IDPs that undergo a disorder-to-order transition on binding to a partner protein. Identifying MoRFs in IDPs using computational methods is a challenging task.

Methods

In this study, we introduce hidden Markov model (HMM) profiles to accurately identify the location of MoRFs in disordered protein sequences. Using windowing technique, HMM profiles are utilised to extract features from protein sequences and support vector machines (SVM) are used to calculate a propensity score for each residue. Two different SVM kernels with high noise tolerance are evaluated with a varying window size and the scores of the SVM models are combined to generate the final propensity score to predict MoRF residues. The SVM models are designed to extract maximal information between MoRF residues, its neighboring regions (Flanks) and the remainder of the sequence (Others).

Results

To evaluate the proposed method, its performance was compared to that of other MoRF predictors; MoRFpred and ANCHOR. The results show that the proposed method outperforms these two predictors.

Conclusions

Using HMM profile as a source of feature extraction, the proposed method indicates improvement in predicting MoRFs in disordered protein sequences.
  相似文献   

7.
Molecular Recognition Features (MoRFs) are defined as short, intrinsically disordered regions in proteins that undergo disorder-to-order transition upon binding to their partners. As their name suggests, they are implicated in molecular recognition, which serves as the initial step for protein–protein interactions. Membrane proteins constitute approximately 30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. The aim of the current study was to identify and analyze MoRFs in membrane proteins. Two datasets of MoRFs, transmembrane and peripheral membrane protein MoRFs, were constructed from the Protein Data Bank, and sequence, structural and functional analysis was performed. Characterization of our datasets revealed their unique compositional biases and membrane protein MoRFs were categorized depending on their secondary structure after the interaction with their partners. Moreover, the position of transmembrane protein MoRFs in relation with the protein's topology was determined. Further studies were focused on functional analyses of MoRF-containing proteins and MoRFs' partners, associating them with protein binding, regulation and cell signaling, indicating half of them as putative hubs in protein–protein interaction networks. In conclusion, we provide insights into the disorder-based protein–protein interactions involving membrane proteins.  相似文献   

8.
We predicted gamma-turns from amino acid sequences using the first-order Markov chain theory and enlarged representative data sets corresponding to protein chains selected from the Protein Data Bank (PDB). The following data sets were used for training and deriving the probability values: (1) an initial data set containing 315 protein chains comprising 904 gamma-turns and (2) a later data set in order to include new entries in the PDB, containing 434 protein chains and comprising 1053 gamma-turns. By excluding 93 protein chains that were common to these two training data sets, we generated two mutually exclusive data sets containing 222 and 341 protein chains for testing our predictions. Applying amino acid probability values derived from training data sets on to testing data sets yielded overall prediction accuracies in the range 54-57%. We recommend the use of probability values derived from the data set comprising 315 protein chains that represents more gamma-turns and also provides better predictions.  相似文献   

9.
Abstract

The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only ~7% of proteins are observed in the corresponding PDB structures, and only ~25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, “Observed” (which correspond to structured regions), “Not observed” (regions with missing electron density, potentially disordered), “Uncharacterized,” and “Ambiguous,” depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a ‘fragment’ or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. “Non-observed,” “Ambiguous,” and “Uncharacterized” regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR® VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the “Observed” dataset are ordered, and that the “Not observed” regions are mostly disordered. The “Uncharacterized” regions possess some tendency toward order, whereas the predictions for the short “Ambiguous” regions are really ambiguous. Long “Ambiguous” regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be “wobbly” domains.

Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset ~10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and ~40% of the proteins possess short regions (≥10 and <30 amino-acid long) of missing and ambiguous residues.  相似文献   

10.
Intrinsic disorder in the Protein Data Bank   总被引:2,自引:0,他引:2  
The Protein Data Bank (PDB) is the preeminent source of protein structural information. PDB contains over 32,500 experimentally determined 3-D structures solved using X-ray crystallography or nuclear magnetic resonance spectroscopy. Intrinsically disordered regions fail to form a fixed 3-D structure under physiological conditions. In this study, we compare the amino-acid sequences of proteins whose structures are determined by X-ray crystallography with the corresponding sequences from the Swiss-Prot database. The analyzed dataset includes 16,370 structures, which represent 18,101 PDB chains and 5,434 different proteins from 910 different organisms (2,793 eukaryotic, 2,109 bacterial, 288 viral, and 244 archaeal). In this dataset, on average, each Swiss-Prot protein is represented by 7 PDB chains with 76% of the crystallized regions being represented by more than one structure. Intriguingly, the complete sequences of only approximately 7% of proteins are observed in the corresponding PDB structures, and only approximately 25% of the total dataset have >95% of their lengths observed in the corresponding PDB structures. This suggests that the vast majority of PDB proteins is shorter than their corresponding Swiss-Prot sequences and/or contain numerous residues, which are not observed in maps of electron density. To determine the prevalence of disordered regions in PDB, the residues in the Swiss-Prot sequences were grouped into four general categories, "Observed" (which correspond to structured regions), "Not observed" (regions with missing electron density, potentially disordered), "Uncharacterized," and "Ambiguous," depending on their appearance in the corresponding PDB entries. This non-redundant set of residues can be viewed as a 'fragment' or empirical domain database that contains a set of experimentally determined structured regions or domains and a set of experimentally verified disordered regions or domains. We studied the propensities and properties of residues in these four categories and analyzed their relations to the predictions of disorder using several algorithms. "Non-observed," "Ambiguous," and "Uncharacterized" regions were shown to possess the amino acid compositional biases typical of intrinsically disordered proteins. The application of four different disorder predictors (PONDR(R) VL-XT, VL3-BA, VSL1P, and IUPred) revealed that the vast majority of residues in the "Observed" dataset are ordered, and that the "Not observed" regions are mostly disordered. The "Uncharacterized" regions possess some tendency toward order, whereas the predictions for the short "Ambiguous" regions are really ambiguous. Long "Ambiguous" regions (>70 amino acid residues) are mostly predicted to be ordered, suggesting that they are likely to be "wobbly" domains. Overall, we showed that completely ordered proteins are not highly abundant in PDB and many PDB sequences have disordered regions. In fact, in the analyzed dataset approximately 10% of the PDB proteins contain regions of consecutive missing or ambiguous residues longer than 30 amino-acids and approximately 40% of the proteins possess short regions (> or =10 and < 30 amino-acid long) of missing and ambiguous residues.  相似文献   

11.
Small angle X-ray scattering (SAXS) measures comprehensive distance information on a protein's structure, which can constrain and guide computational structure prediction algorithms. Here, we evaluate structure predictions of 11 monomeric and oligomeric proteins for which SAXS data were collected and provided to predictors in the 13th round of the Critical Assessment of protein Structure Prediction (CASP13). The category for SAXS-assisted predictions made gains in certain areas for CASP13 compared to CASP12. Improvements included higher quality data with size exclusion chromatography-SAXS (SEC-SAXS) and better selection of targets and communication of results by CASP organizers. In several cases, we can track improvements in model accuracy with use of SAXS data. For hard multimeric targets where regular folding algorithms were unsuccessful, SAXS data helped predictors to build models better resembling the global shape of the target. For most models, however, no significant improvement in model accuracy at the domain level was registered from use of SAXS data, when rigorously comparing SAXS-assisted models to the best regular server predictions. To promote future progress in this category, we identify successes, challenges, and opportunities for improved strategies in prediction, assessment, and communication of SAXS data to predictors. An important observation is that, for many targets, SAXS data were inconsistent with crystal structures, suggesting that these proteins adopt different conformation(s) in solution. This CASP13 result, if representative of PDB structures and future CASP targets, may have substantive implications for the structure training databases used for machine learning, CASP, and use of prediction models for biology.  相似文献   

12.
13.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

14.
The iron storage protein ferritin consists of two types of subunits of different molecular weight, heavy (H) and light (L). The rat genome contains approximately 20 copies of the ferritin L-subunit gene, of which we have sequenced seven. One is an expressed ferritin gene containing three introns located between the alpha-helical domains of the L-subunit protein. The remaining six have the characteristics of processed pseudogenes. Sequence divergence suggest that these pseudogenes arose approximately 3-12 X 10(6) years ago, well within the 30 X 10(6) years of divergence of rat and mouse. By using intron probes derived from the expressed ferritin L-gene, a homologous second copy has been identified in some Fischer rats. Comparison of the 5'-untranslated region of the rat L-gene with the published sequences of this region of the human L (Santoro, C., Marone, M., Ferrone, M., Costanzo, F., Colombo, M., Minganti, C., Cortese, R., and Silengo, L. (1986) Nucleic Acids Res. 14, 2863-2876) and H (Costanzo, F., Colombo, M., Staempfli, S., Santoro, C., Marone, M., Frank, R., Delius, H., and Cortese, R. (1986) Nucleic Acids Res. 14, 721-735) genes and of a bullfrog cDNA (Didsbury, J. R., Theil, E. C., Kaufman, R. E., and Dickey, L. F. (1986) J. Biol. Chem. 261, 949-955) show a strongly conserved 28-base pair sequence, suggesting a translational regulatory function. The 5' flanking region of the rat L-gene contains sequences homologous to those in the flanking areas of the human L- and H-genes. The implications of these conserved sequences for control of ferritin expression are discussed.  相似文献   

15.
The colchicine analog 2-methoxy-5-(2',3',4'-trimethoxyphenol) tropone (AC) was used as a fluorescent probe to study the binding kinetics of podophyllotoxin at high concentrations. The observed pseudo-first order rate constant showed a linear concentration dependence up to 1 mM. The bimolecular rate constant (195 M-1 s-1 at 15 degrees C) and the activation energy (57 kJ/mol) correspond perfectly with those previously determined in the submicromolar range (Cortese, F., Bhattacharyya, B., and Wolf, J. (1977) J. Biol. Chem. 252, 1134-1140). Displacement kinetics of bound AC by podophyllotoxin, allow the determination of the dissociation rate constants for AC. By studying the temperature dependence, and combining with the binding rate constants previously determined (Engelborghs, Y., and Fitzgerald, T.J. (1986) Ann. N.Y. Acad. Sci. 466, 709-717) a full characterization of the kinetic pathway is possible. This is shown to differ considerably from the pathway of colchicine binding.  相似文献   

16.
Several algorithms have been developed that use amino acid sequences to predict whether or not a protein or a region of a protein is disordered. These algorithms make accurate predictions for disordered regions that are 30 amino acids or longer, but it is unclear whether the predictions can be directly related to the backbone dynamics of individual amino acid residues. The nuclear Overhauser effect between the amide nitrogen and hydrogen (NHNOE) provides an unambiguous measure of backbone dynamics at single residue resolution and is an excellent tool for characterizing the dynamic behavior of disordered proteins. In this report, we show that the NHNOE values for several members of a family of disordered proteins are highly correlated with the output from three popular algorithms used to predict disordered regions from amino acid sequence. This is the first test between an experimental measure of residue specific backbone dynamics and disorder predictions. The results suggest that some disorder predictors can accurately estimate the backbone dynamics of individual amino acids in a long disordered region.  相似文献   

17.
Availability of computational methods that predict disorder from protein sequences fuels rapid advancements in the protein disorder field. The most accurate predictions are usually obtained with consensus-based approaches. However, their design is performed in an ad hoc manner. We perform first-of-its-kind rational design where we empirically search for an optimal mixture of base methods, selected out of a comprehensive set of 20 modern predictors, and we explore several novel ways to build the consensus. Our method for the prediction of disorder based on Consensus of Predictors (disCoP) combines seven base methods, utilizes custom-designed set of selected 11 features that aggregate base predictions over a sequence window and uses binomial deviance loss-based regression to implement the consensus. Empirical tests performed on an independent benchmark set (with low-sequence similarity compared with proteins used to design disCoP), shows that disCoP provides statistically significant improvements with at least moderate magnitude of differences. disCoP outperforms 28 predictors, including other state-of-the-art consensuses, and achieves Area Under the ROC Curve of .85 and Matthews Correlation Coefficient of .5 compared with .83 and .48 of the best considered approach, respectively. Our consensus provides high rate of correct disorder predictions, especially when low rate of incorrect disorder predictions is desired. We are first to comprehensively assess predictions in the context of several functional types of disorder and we demonstrate that disCoP generates accurate predictions of disorder located at the post-translational modification sites (in particular phosphorylation sites) and in autoregulatory and flexible linker regions. disCoP is available at http://biomine.ece.ualberta.ca/disCoP/.  相似文献   

18.
19.
Extensive feature detection of N-terminal protein sorting signals   总被引:16,自引:0,他引:16  
MOTIVATION: The prediction of localization sites of various proteins is an important and challenging problem in the field of molecular biology. TargetP, by Emanuelsson et al. (J. Mol. Biol., 300, 1005-1016, 2000) is a neural network based system which is currently the best predictor in the literature for N-terminal sorting signals. One drawback of neural networks, however, is that it is generally difficult to understand and interpret how and why they make such predictions. In this paper, we aim to generate simple and interpretable rules as predictors, and still achieve a practical prediction accuracy. We adopt an approach which consists of an extensive search for simple rules and various attributes which is partially guided by human intuition. RESULTS: We have succeeded in finding rules whose prediction accuracies come close to that of TargetP, while still retaining a very simple and interpretable form. We also discuss and interpret the discovered rules.  相似文献   

20.

Motivation

Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is often the binding to globular protein domains via sequence elements known as molecular recognition features (MoRFs). Development of computational tools for the identification of candidate MoRF locations in amino acid sequences is an important task and an area of growing interest. Given the relative sparseness of MoRFs in protein sequences, the accuracy of the available MoRF predictors is often inadequate for practical usage, which leaves a significant need and room for improvement. In this work, we introduce MoRFCHiBi_Web, which predicts MoRF locations in protein sequences with higher accuracy compared to current MoRF predictors.

Methods

Three distinct and largely independent property scores are computed with component predictors and then combined to generate the final MoRF propensity scores. The first score reflects the likelihood of sequence windows to harbour MoRFs and is based on amino acid composition and sequence similarity information. It is generated by MoRFCHiBi using small windows of up to 40 residues in size. The second score identifies long stretches of protein disorder and is generated by ESpritz with the DisProt option. Lastly, the third score reflects residue conservation and is assembled from PSSM files generated by PSI-BLAST. These propensity scores are processed and then hierarchically combined using Bayes rule to generate the final MoRFCHiBi_Web predictions.

Results

MoRFCHiBi_Web was tested on three datasets. Results show that MoRFCHiBi_Web outperforms previously developed predictors by generating less than half the false positive rate for the same true positive rate at practical threshold values. This level of accuracy paired with its relatively high processing speed makes MoRFCHiBi_Web a practical tool for MoRF prediction.

Availability

http://morf.chibi.ubc.ca:8080/morf/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号