首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique for rapid measurement of nuclear and cytoplasmic size relationships in mammalian cell populations has been developed. Based on fluorescence staining of either the nucleus alone or in combination with the cytoplasm using two-color fluorescence methods, this technique permits the simultaneous determination of nuclear and cytoplasmic diameters from fluorescence and light-scatter measurements. Cells stained in liquid suspension pass through a flow chamber at a constant velocity, intersecting a laser beam which excites cell fluorescence and causes light scatter. Depending upon which analysis procedure is used, optical sensors measure nuclear fluorescence and light scatter (whole cell size) or two-color nuclear and cytoplasmic fluorescence from individual cells crossing the laser beam. The time durations of signals generated by the nucleus and cytoplasm are converted electronically into signals proportional to the respective diameters and are displayed as frequency distribution hitograms. Illustrative examples of measurements on uniform microspheres, cultured mammalian cells and human exfoliated gynecologic cells are presented.  相似文献   

2.
BACKGROUND: Flow cytometers, which are commercially available, do not necessarily meet all demands of actual biomedical research. This is the case for the investigation of mechanisms involved in cell volume regulation, which requires electrical volume measurement and ratiometric multichannel fluorescence analysis for the simultaneous assessment of different physiologic parameters (intracellular pH and the intracellular concentration of calcium ions, etc). METHODS AND RESULTS: We describe the construction of a new nonsorting flow cytometer designed for the simultaneous acquisition of seven parameters including fluorescence signals, forward and perpendicular light scatter, cell volume according to the electrical Coulter principle, and flow cytometric imaging. The instrument is equipped with three different light sources. A tunable argon-ion laser generates efficient excitation of the most standard fluorescent probes in the visible spectral range, and an arc lamp provides the means for ultraviolet excitation at low cost. Because of the spatial filtering by the excitation and detection optics, two independent sets of dual fluorescence measurements can be performed, a prerequisite for flexible ratiometric fluorescence analysis. A flow video microscope integrated into the optical system optionally generates either brightfield or phase images of selected flowing particles. Only particles whose individual datasets meet predefined gating conditions are imaged in real time. To avoid smear effects, the motion of the object to be imaged (speed approximately 8 m/s) is frozen on the target of a CCD camera by flash illumination. For this purpose, a high radiance gas discharge lamp with 25-mJ electric pulse energy provides an illumination time of 18 ns (full width half maximum). Test results obtained from latex spheres and cells are shown. CONCLUSIONS: Test results indicate that our instrument can perform Coulter measurements in combination with flexible optical analysis. Moreover, integration of an adapted video microscope into a flow cytometer is an approach to overcome the gap between flow and image cytometry.  相似文献   

3.
D Burger  R Gershman 《Cytometry》1988,9(2):101-110
An instrument has been developed that uses a computer-controlled rapidly scanning laser beam to make cytometric measurements on cells or particles and which can measure low levels of fluorescence when using low-power lasers (Gershman, Hoffman, and O'Connell, "Methods and Apparatus for Analysis of Particles and Cells.") The method used is based upon acousto-optic principles of light diffraction. A vertically polarized 5-mW He-Ne laser is directed into an acousto-optic Bragg cell in which a portion of the incident light undergoes a small angular variation or deflection. Suitable optics focus the beam to a 25 microns diameter spot, at the 1/e2 point, in a sample cuvette while translating the angular variation into a linear scan. The cuvette enclosing the sample is slowly moved (approximately 1 micron/ms) via a stepper drive into the scanning beam while the forward angle light scatter sensor is monitored for the presence of valid signal events. When an event occurs, appropriate software optimizes the position of the focused laser beam onto the cell. Subsequently, scanning is stopped to allow for cell interrogation times that last for milliseconds or longer.  相似文献   

4.
Cells in mitosis can be flow cytometrically discriminated from G1, S, and G2 cells by analysis of a nuclear suspension prepared with nonionic detergent, fixed with formaldehyde, and stained with mithramycin, propidium iodide, or ethidium bromide. With these DNA-fluorochromes, the fluorescence is quenched by formaldehyde less in mitotic nuclei than in interphase nuclei. Mitotic nuclei have a 20-40% increased mithramycin fluorescence and 30-60% decreased light scatter in comparison to those of G2 nuclei. There is a high correlation (r = 0.95; P less than 0.001) between microscope counts of mitotic figures in smear preparations of the initial cell suspension and the flow cytometrically estimated fraction of nuclei with increased mithramycin fluorescence. Flow sorting (FACS) demonstrates that the mitotic nuclei are confined to the peak of increased mithramycin fluorescence and decreased light scatter. The method has been applied to cultures of Yoshida ascites tumor cells, JB-1 reticulosarcoma cells, and PHA-stimulated human lymphocytes, incubated in the presence or absence of vinblastine for mitotic arrest. In a heteroploid mixture of fixed Yoshida (near-diploid) and JB-1 (hypotetraploid) nuclei, the mitotic fractions of the two cell lines could be estimated separately when analyzed with mithramycin fluorescence versus light scatter or with mithramycin fluorescence versus propidium iodide fluorescence.  相似文献   

5.
Flow cytometry is a key instrument in biological studies, used to identify and analyze cells in suspension. The identification of cells from debris is commonly based on light scatter properties as it has been shown that there is a relationship between forward scattered light and cell volume and this has become common practice in flow cytometry. Cryobiological conditions induce changes in cells that alter their light scatter properties. Cells with membrane damage from freeze–thaw stress produce lower forward scatter signals and may fall below standard forward scatter thresholds. In contrast to light scatter properties that cannot identify damaged cells from debris, fluorescent dyes used in membrane integrity and mitochondrial polarization assays are capable of labeling and discriminating all cells in suspension. Under cryobiological conditions, isolating cell populations is more effectively accomplished by gating on fluorescence rather than light scatter properties. This study shows the limitations of using forward scatter thresholds in flow cytometry to identify and gate cells after exposure to a freeze–thaw protocol and demonstrates the use of fluorescence as an alternative means of identifying and analyzing cells.  相似文献   

6.
BACKGROUND: The cytometric methods of bivariate analysis of cellular RNA versus DNA content have limitations. The method based on the use of metachromatic fluorochrome acridine orange (AO) requires rigorous conditions of the equilibrium staining whereas pyronin Y and Hoechst 33342 necessitate the use of an instrument that provides two-laser excitation, including the ultraviolet (UV) light wavelength. METHODS: Phytohemagglutinin (PHA)-stimulated human lymphocytes were deposited on microscope slides and fixed. DNA and double-stranded (ds) RNA were stained with propidium iodide (PI) and protein was stained with BODIPY 630/650-X or fluorescein isothiocyanate (FITC). Cellular fluorescence was measured with a laser scanning cytometer (LSC). The cells were treated with RNase A and their fluorescence was measured again. The file-merge feature of the LSC was used to record the cell PI fluorescence measurements prior to and after the RNase treatment in list mode, as a single file. The integrated PI fluorescence intensity of each cell after RNase treatment was subtracted from the fluorescence intensity of the same cell measured prior to RNase treatment. This RNase-specific differential value of fluorescence (differential fluorescence [DF]) was plotted against the cell fluorescence measured after RNase treatment or against the protein-associated BODIPY 630/650-X or FITC fluorescence. RESULTS: The scattergrams were characteristic of the RNA versus DNA bivariate distributions where DF represented cellular ds RNA content and fluorescence intensity of the RNase-treated cells, their DNA content. The distributions were used to correlate cellular ds RNA content with the cell cycle position or with protein content. CONCLUSIONS: One advantage of this novel approach based on the recording and plotting of DF is that only the RNase -specific fraction of cell fluorescence is measured with no contribution of nonspecific components (e.g., due to the emission spectrum overlap or stainability of other than RNA cell constituents). Another advantage is the method's simplicity, which ensues from the use of a single dye, the same illumination, and the same emission wavelength detection sensor for measurement of both DNA and ds RNA. The method can be extended for multiparameter analysis of cell populations stained with other fluorochromes of the same-wavelength emission but targeted (e.g., immunocytochemically) for different cell constituents.  相似文献   

7.
An improved dual-laser flow cytometric system for quantitative analysis and sorting of mammalian cells has been developed using a low-power argon and high-power krypton laser as illumination sources, thus permitting the excitation of fluorescent dyes having absorption regions ranging from the ultraviolet to infrared. Cells stained in liquid suspension with fluorescent dyes enter a flow chamber where they intersect two spatially separated laser beams. Separate pairs of quartz beam-shaping optics focus each beam onto the cell stream. Electro-optical sensors measure fluorescence and light scatter signals from cells that are processed electronically and displayed as frequency distribution histograms. Cells also can be electronically separated and microscopically identified. The ease and versatility of operation designed into this system represent a marked technological improvement for dual-laser excited flow systems. Details of this instrument are described along with illustrative examples of cells stained with mithramycin and rhodamine and analyzed for DNA content, total protein, and nuclear and cytoplasmic diameter.  相似文献   

8.
AIM: To test laser scanning cytometry (LSC) for the analysis of ploidy in squamous cell carcinoma of the hypopharynx (SCCH) and to develop a routine application for minimal samples such as fine needle aspirate biopsies (FNABs). METHODS: From 11 individuals 30 FNABs of primary tumors (n=11) and lymphatic metastases of SCCH (n=11) and non-metastatic lymph nodes (n=8) are analyzed by LSC. This microscope based instrument scans the cells after immobilization on a glass slide and after double staining of cytokeratin and DNA. The location of each cell is stored with the fluorescence data. Therefore the morphology of every cell can be documented by re-staining with H & E; and re-localization on the slide. Additionally, aliquots are Feulgen-stained for image cytometry in 8 specimens. RESULTS: The diploid reference peak is identified taking leukocytes as internal standard. The DNA-index of the carcinoma cells ranges from 0.4 to 3.8. Comparison with image cytometry shows good correlation (r=0.89). CONCLUSION: LSC provides a reliable and objective way to determine the ploidy of SCCH pre-operatively. Colour figures can be viewed on http://www.esacp.org/acp/2003/25-2/gerstner.htm.  相似文献   

9.
An instrument is described that can automatically analyze and select for a subpopulation of anchorage-dependent cells in tissue culture. Cells that label with fluorescently tagged antibodies or demonstrate structural variations are saved from exposure to a destructive high-intensity argon laser beam. The surviving population may then be cloned. The cell selection may occur in a tissue culture plate or in a microflow incubator which is designed to maintain a constant flow of media at 37 degrees C across cells growing on a glass coverslip. This incubator sits on an inverted microscope which focuses the laser beam to a diameter as small as 1 micron. A high-speed computer-controlled two-dimensional stage moves the cells past the beam for analysis, the results of which determine the fate of each cell: whether it is to be destroyed by radiant energy or selected for survival and subsequent proliferation. Another selection strategy performed by the instrument involves growing the cells on a thin, blackened polyester film which can be cut by the argon laser beam. Cells selected for cloning are then circumscribed. The heat of cutting welds the circumscribed film to a plastic coverslip surface or tissue culture chamber bottom. Nonselected cells may be removed by pulling the unattached polyester sheet from the attachment surface. The selected cells remain on polyester film disks welded to the plastic. Selections may be done automatically under computer control or manually by operator direction of stage movements. This instrument extends the art of automated cell selection and analysis to normal cell lines that must maintain cell-substratum contact (anchorage dependence) for differentiated cell function, e.g., neurons, fibroblasts, or kidney cells.  相似文献   

10.
BACKGROUND: The application of molecules that fluoresce in the infrared (IR) region to measure cell products would be enhanced by a flow cytometer capable of measuring them. To our knowledge, none exist at this time. Accordingly, we have developed such an instrument. METHODS: A Becton Dickinson LSR flow cytometer was modified to include a small 785-nm IR diode laser the size of a C cell battery with 44-mW output power. The instrument was modified further to accommodate this laser in addition to a 405-nm solid-state laser, a 488-nm air-cooled argon laser, and a 658-nm solid-state laser. Because the IR laser is dangerous to the eye, the laser beams were viewed for optical alignment using a CCD camera and video monitor. An avalanche photodiode was used in place of a photomultiplier tube because its detection sensitivity in the IR region is superior. RESULTS: To assess performance, scatter and fluorescence measurements were made using microspheres that fluoresce in the IR region, and human leukocytes were stained with CD45 biotin followed by a streptavidin conjugated with an IR dye. An avalanche photodiode was 2.3 to 2.8 times more sensitive than a photomultiplier tube for detecting IR fluorescence. Cells stained with CD45 biotin and avidin conjugated with an IR dye could easily be resolved and their fluorescence quantified; there was virtually no autofluorescence. In addition, a lipophilic membrane dye that emits in the IR region was studied. HL60 cells were stained with this dye and they exhibited bright fluorescence intensity. CONCLUSION: A commercial instrument could be modified to accommodate an IR laser for exciting dyes that fluoresce in the IR region. This new capability will extend the range of fluorescence that can be measured by flow cytometry.  相似文献   

11.
We present a new, flow cytometric method by which cells in various stages of the meiotic prophase can be quantitated and sorted in partly enriched fractions. Ovarian cells of 3-16-day-old rabbits were mechanically dispersed and fixed in ethanol and aldehydes. The cell suspension was stained with the DNA fluorochrome mithramycin and analysed and sorted in a FACS IV cell sorter according to the fluorescence and forward light scatter distribution. Cells sorted onto slides were stained with haematoxylin and eosin and differentially counted in the microscope. In the diploid fraction, preleptotene cells were more fluorescent than somatic cells. Leptotene cells were found throughout the S fraction and the tetraploid fraction. Zygotene and pachytene cells caused a major peak in the tetraploid region with 10-25% more fluorescence than somatic cells. Cells in diplotene had 5-15% more fluorescence than somatic cells. Mitotic cells were 20-40% more fluorescent than somatic cells and scattered the light more intensely than did meiotic cells with the same fluorescence.  相似文献   

12.
Flow-cytometric analysis of acriflavin-Feulgen stained chicken erythrocytes shows a complex distribution of amounts of deoxyribonucleic acid fluorescence, the profile consisting of a main peak and a right hand shoulder. This bimodal distribution, an artifact characteristically seen on analysis of flattened cells using orthogonal flow systems, results from fluorescence emission in preferred directions stemming from the combined effects of refractility and orientation of the cells. The shoulder disappears on analysis of lysed erythrocyte ghosts, also on analysis of cells in a medium whose refractive index approximates that the cells. An orientation effect for matrue erythrocytes was indicated by reanalysis of fractions after sorting on the basis of high and low fluorescence or scatter signals. Both fractions gave the original range of values on reanalysis, although some changes in shape of the profile and in the peak positions for the sorted cells were seen. Sodium dodecyl sulfate treatment of stained cells "loosened" the cells' structure, yielding lowered scatter values, and fluorescence values approaching those of the shoulder. The average fluorescence emission of the erythrocytes was lower than that of reticulocytes and lymphocytes. The values of the latter correspond closely, although coincidently, to that the erythrocyte shoulder values. Dual parameter analysis of forward light scatter, and fluorescence, which was detected at 90 degrees to the laser beam, showed the low fluorescence to be accompanied by low scatter signal, and the high fluorescence among the cells with the high scatter signal. The lowered forward scatter signal is due to a wider scattering of light from cells oriented edge-on to the detector, and loss of signal beyond the acceptance angle of the detector. These results suggest that the preferred directions for fluorescence are in the plane of the cells, and the values are dependent on the cells' orientation in the stream. These interpretations were supported by the results of analysis of partially oriented cells. The approaches used and conclusions arrived at are similar to those of Gledhill et al (16), Van Dilla et al (37), in their analysis of fluorescence of flat sperm cells although the affects in the case of the erythrocytes are less extreme.  相似文献   

13.
A data acquisition system is described for recording two independent signals simultaneously from a laser-based flow cytometer for rapid slit-scan chromosome analysis. High-aperture microscope optics allow recording of fluorescence distributions along the longest axis of metaphase chromosomes with a spatial resolution better than 1 micron. Fluorescence and small angle forward light scatter as well as dual-wavelength fluorescence signals from Indian muntjac chromosomes stained with propidium iodide (PI) or acridine orange (AO) have been recorded simultaneously. While maintaining the multi-user operation of the computer, photomultiplier signals are digitized at a rate of 400 signals per second, stored temporarily in high-speed cache memories, and transferred subsequently to a minicomputer for further storage. Extensive software packages for data acquisition, analysis, and display of the results are described. Data acquisition is generally done in list mode, allowing complete reconstruction of individual signals (profiles) at any time. The distribution of stained constituents along the chromosomes can be displayed. Furthermore, histograms of various parameters of the input signals may be generated.  相似文献   

14.
An improved multisensor cell sorting instrument for quantitative analysis and sorting of cells has been developed. Cells stained with fluorescent dyes enter a flow chamber where cell volume, fluorescence, and light scatter sensors simultaneously measure multiple cellular properties. Cells then emerge in a liquid jet that is broken into uniform liquid droplets. Sensor signals are electronically processed in one of several ways for optimum cell discrimination and are displayed as pulse-amplitude distributions using a multichannel pulse-height analyzer. Processed signals activate cell sorting according to preselected parametric criteria by electrically charging droplets containing cells and electrostatically deflecting them into collection vessels. Illustrative examples of multiparameter cell analysis and sorting experiments using a model mouse tumor cell system, human and animal leukocytes, and cultured mammalian cells are presented.  相似文献   

15.
An automated diagnostic test instrument and its development program are described. The instrument automates the fluorescent treponemal antibody-absorption test for syphilis to the extent that only 4 hr of technician time is required to conduct approximately 200 tests daily. Evaluation to date suggests its efficacy. In addition, preliminary studies indicate the feasibility of detecting antibodies to Toxoplasma gondii, Plasmodium malariae, and nucleoprotein (antinuclear factor). The instrument would seem to have broad application for routine and research immunofluorescence testing. Two elements comprise the instrument: a slide processor and a microscope attachment. The slide processor is an electro-pneumatically actuated device which automatically feeds special laboratory slides, on which antigen or other reagents are prefixed, through a series of operations which provide reagent application, incubation, washing, drying, and stacking of the finished slides for readout. The instrument provides flexibility in that incubation time and temperature as well as point, sequence, and duration of reagent application can be varied to accommodate a variety of immunofluorescence techniques. The microscope attachment can be fitted to all conventional dark-field fluorescence microscopes and makes possible the reading of three to six slides per minute. The reacted slides from the processor are injected sequentially onto the stage of the microscope by movement of a lever. As injected, slides are automatically in visual focus; fine focus is occasionally required. Scanning of the reacted field is accomplished by means of the normal microscope controls. A buffered glycerol coupling is maintained between the darkfield condenser substage lens and the slide cover glass by means of a pushbutton-actuated feed system.  相似文献   

16.
A microscope-based flow cytophotometer   总被引:5,自引:0,他引:5  
By means of a new flow chamber, a standard fluorescence microscope with Epi illumination and 100 W mercury arc excitation has been turned into a flow cytophotometer combining high resolution and sensitivity with simplicity of operation. In the flow chamber, cells are passed in a narrow stream through the microscope focus carried by a laminar flow of water running on the open surface of a cover glass which is coupled to the oil immersion microscope objective. Two spectral components of the fluorescence, for example, resulting from specific staining of two different cellular constituents with different dyes, can be measured simultaneously in separate channels so as to produce three-dimensional histograms. The scattered light of the cells is detected in dark field by a second microscope situated opposite the primary objective. Scattered light detection is integrating with regard to scattering angle from 0 degree to 90 degrees. Hence, diffraction pattern effects are eliminated and the light scatter signal is approximately proportional to cell dry weight. The Epi illumination, which implies that excitation and fluorescence collection are parfocal, greatly simplifies instrument adjustment, which is further facilitated by the fact that the cell stream can be viewed at high magnification. Cell measuring time is about 3 microseconds which implies a measuring rate of 3 x 10(3) cells/s at 1% coincidence rate. Sensitivity is sufficient for measuring the DNA content of bacteria (that is, approximately 5 x 10(-15) g/cell) with a coefficient of variance (CV) of about 6%. CV less than 1% is achieved for DNA histograms of mammalian cells. A 5 W argon laser as excitation source facilitates slit scan analysis and increases the sensitivity and measuring rate by one to two orders of magnitude.  相似文献   

17.
By use of two-parameter flow cytometry of rat testis cell suspensions stained with mithramycin for DNA (the peak amplitude of the fluorescence signal versus total fluorescence intensity integrated over time), eight cell compartments could be distinguished without pre-enrichment of the samples. Cells in these compartments were identified by sorting and subsequent microscopic examination.  相似文献   

18.
In laser flow cytometry, an increasingly popular technique of analytical cytology, quantitative measurements of interest include cell and nuclear diameters. Electronic circuitry for a new cell sizing technique has been developed which measured the time that signal pulses from either fluorescence or light scatter sensors exceed a preset constant fraction of the peak signal amplitude (pulse width) or the time that it takes a signal to rise between constant fractions of the peak signal amplitude on the rising side of the pulse (pulse rise-time). These pulse width or pulse rise-time measurements were related to cell or nuclear diameters and were used in combination to determine nuclear size to cell size ratios. This method of sizing was found to be independent of fluorescent or light-absorbing stain intensity, linearly related to cell or nuclear diameter, and capable of resolving small diameter differences.  相似文献   

19.
Xia Z  Liu Y 《Biophysical journal》2001,81(4):2395-2402
Green fluorescence protein (GFP)-based fluorescence resonance energy transfer (FRET) is increasingly used in investigation of inter- and intramolecular interactions in living cells. In this report, we present a modified method for FRET quantification in cultured cells using conventional fluorescence microscopy. To reliably measure FRET, three positive control constructs in which a cyan fluorescence protein and a yellow fluorescence protein were linked by peptides of 15, 24, or 37 amino acid residues were prepared. FRET was detected using a spectrofluorometer, a laser scanning confocal microscope, and an inverted fluorescence microscope. Three calculation methods for FRET quantification using fluorescence microscopes were compared. By normalization against expression levels of GFP fusion proteins, the modified method gave consistent FRET values that could be compared among different cells with varying protein expression levels. Whole-cell global analysis using this method allowed FRET measurement with high spatial resolutions. Using such a procedure, the interaction of synaptic proteins syntaxin and the synaptosomal associated protein of 25 kDa (SNAP-25) was examined in PC12 cells, which showed strong FRET on plasma membranes. These results demonstrate the effectiveness of the modified method for FRET measurement in live cell systems.  相似文献   

20.
Fluorescence is a phenomenon observable in many substances including a wide range of biological constituents. By use of ultraviolet illumination and the proper fluorescent dyes, when needed, many details of structure and physiological differentiation are made apparent which by illumination with visible light are obscure.

The fluorescence microscope is a valuable adjunct to the study of fluorescence in biological materials. This instrument is discussed from a practical standpoint. The simplifications in the instrument which do not impair its efficiency are indicated.

The use of fluorochromes is discussed and a list of the most important of these is given. Important technics with the fluorescence microscope, including intravital microscopy, fluorescent photomicrography, and microspectroscopy, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号