首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of 5-trifluoromethyl-2'-deoxyuridine (CF3dUrd) on DNA synthesis was investigated in vitro assay systems with purified DNA polymerases. CF3dUrd was incorporated into the DNA of mammalian cells in culture. We studied the incorporation of CF3dUrd 5'-triphosphate (CF3dUTP) into DNA and effect of CF3dUrd residue on DNA synthesis. Therefore, we synthesized oligonucleotides that allow site specific introduction of a CF3dUrd residue into a synthetic DNA oligonucleotide. After CF3dUTP incorporation, the primer was extended for human DNA polymerase alpha (pol. alpha). When CF3dUrd residue was located at an internucleotide site in the template, however, pol. alpha was exhibited a strong arrest band one nucleotide after the CF3dUrd residue site, and Escherichia coli polymerase I (Klenow fragment) also exhibited a weaker arrest band one nucleotide before the CF3dUrd residue. These results suggested that a mechanism of antitumor activity of CF3dUrd is inhibition of DNA replication.  相似文献   

2.
The affinity of different ligands (phosphate, nucleoside monophosphates, oligonucleotides) to the template binding site of DNA polymerase alpha from human placenta was estimated. To this goal, dependences of rate of the enzyme inactivation by the affinity reagent d(pT)2pC[Pt2+(NH3)2OH](pT)7 on the concentration of these ligands as competitive inhibitors were determined. Minimal ligands capable to bind with the template site of DNA polymerase alpha were shown to be triethylphosphate (Kd 600 microM) and phosphate (Kd 53 microM). Ligand affinity increases by the factor 1.71 per added monomer unit from phosphate to d(pT) and then for oligothymidylates d(Tp)nT (n 1 to 14). The partial ethylation of phosphodiester groups does not change the efficiency of the oligothymidylate binding with the enzyme. However, the complete ethylation of these groups lowers affinity of the oligothymidylates to the enzyme by 7-9 times. The decrease is comparable with the change of Pt2+-decathymidylate affinity to the enzyme caused by Mn2+-ions. The data obtained led to suggestion that an electrostatic contact (most likely, Me2+-dependent) of phosphodiester group with the enzyme takes place. The type of contact is confirmed by Gibbs' energy change 1.1-1.4 kcal/mole. Formation of a hydrogen bond with the oxygen atom of P = O group of the same phosphate is also assumed (delta G =--4.4 . . .--4.5 kcal/mole). The other internucleotide phosphates and all bases of oligonucleotides form neither hydrogen bonds nor electrostatic contacts with the template binding site. Gibbs' energy changes by 0.32 kcal/mole when the template is lengthened by one unit. We suppose that this value characterizes the energy gain in the transition of oligonucleotide template from aquous medium to the hydrophobic environement of the enzyme active site. Comparison of Km values of oligothymidylates and their partially or completely ethylated analogues as templates in the reaction of DNA polymerization catalysed by DNA polymerase alpha from human placenta and Klenow's fragment of E. coli DNA polymerase I suggests a similar mechanism of template recognition by both enzymes.  相似文献   

3.
4.
Functional consequences of the arabinosylcytosine structural lesion in DNA   总被引:6,自引:0,他引:6  
T Mikita  G P Beardsley 《Biochemistry》1988,27(13):4698-4705
  相似文献   

5.
Functional effects of cis-thymine glycol lesions on DNA synthesis in vitro   总被引:8,自引:0,他引:8  
J M Clark  G P Beardsley 《Biochemistry》1987,26(17):5398-5403
  相似文献   

6.
Activity of thymidylate synthase was measured in situ in leukemia cells by tritium release from [5-3H]dUrd. Aphidicolin, an inhibitor of DNA polymerase alpha, but not thymidylate synthase, caused a time dependent inhibition of the enzyme when added to the cells after [5-3H]dUrd. Cells treated with hydroxyurea and aphidicolin in sequence before addition of [5-3H]dUrd had a high initial thymidylate synthase activity that decreased with time. This pattern indicates that thymidylate synthase activity is linked to DNA synthesis; however, its inhibition by drugs that inhibit DNA synthesis may be due to accumulation of thymidine nucleotide(s), rather than to an allosteric interaction in the replitase complex.  相似文献   

7.
Rev1 protein of Saccharomyces cerevisiae functions with DNA polymerase zeta in mutagenic trans-lesion synthesis. Because of the reported preferential incorporation of a C residue opposite an abasic site, Rev1 has been referred to as a deoxycytidyltransferase. Here, we use steady-state kinetics to examine nucleotide incorporation by Rev1 opposite undamaged and damaged template residues. We show that Rev1 specifically inserts a C residue opposite template G, and it is approximately 25-, 40-, and 400-fold less efficient at inserting a C residue opposite an abasic site, an O(6)-methylguanine, and an 8-oxoguanine lesion, respectively. Rev1 misincorporates G, A, and T residues opposite template G with a frequency of approximately 10(-3) to 10(-4). Consistent with this finding, Rev1 replicates DNA containing a string of Gs in a template-specific manner, but it has a low processivity incorporating 1.6 nucleotides per DNA binding event on the average. From these observations, we infer that Rev1 is a G template-specific DNA polymerase.  相似文献   

8.
The reversed-phase chromatography technique was employed in the measurement of DNA synthesis at the primers d(pT)n, r(pU)n, d(pA)n, and r(pA)n (n = 1-16) in the presence of template poly(dA) or poly(dT). DNA synthesis was catalyzed by Escherichia coli DNA polymerase I Klenow fragment, Physarum polycephalum DNA polymerase beta-like, P. polycephalum DNA polymerase alpha, and human placenta DNA polymerase alpha. Values of Km and Vmax were measured as functions of the primer chain lengths. It was found that all mononucleotides and small oligonucleotides served as primers of DNA synthesis. Values of the logarithm of both Km and Vmax increased linearly until primers had attained a chain length of 9-12 nucleotides, where a break was observed. The incremental as well as the absolute values of Km were interpreted in terms of free binding energies. These together with other data indicate that the 3'-ultimate nucleotide of the primer contributes a decisive amount of free energy of binding to DNA polymerase both from the nucleoside and from the phosphate moiety. The incremental increase is due to a complementary interaction between bases of primer and template buried in the binding cleft of the polymerase. It is also the ultimate nucleotide that determines whether the ribonucleotide or the deoxyribonucleotide is an efficient primer. It is of interest that the major results seem preserved for all four DNA polymerases. An energetic model for the binding of the template-primer was proposed and compared with available crystallographic data.  相似文献   

9.
To investigate the mechanism of trifluorothymidine (TFT)-induced DNA damage, we developed an enzymatic method for the synthesis of single-strand oligonucleotides containing TFT-monophosphate residues. Sixteen-mer oligonucleotides and 14-mer 5'-phosphorylated oligonucleotides were annealed to the template of 25-mer, so as to empty one nucleotide site. TFT-triphosphate was incorporated into the site by DNA polymerase and then ligated to 5'-phosphorylated oligonucleotides by DNA ligase. The synthesized 31-mer oligonucleotides containing TFT residues were isolated from the 25-mer complementary template by denaturing polyacrylamide electrophoresis. Using these single-strand oligonucleotides containing TFT residues, the cleavage of TFT residues from DNA, using mismatch uracil-DNA glycosylase (MUG) of E.coli origin, was compared with that of 5-fluorouracil (5FU) and 5-bromodeoxyuridine (BrdU). The TFT/A pair was not cleaved by MUG, while the other pairs, namely, 5FU/A, 5FU/G, BrdU/A, BrdU/G, and TFT/G, were easily cleaved from each synthesized DNA. Thus, this method is useful for obtaining some site-specifically modified oligonucleotides.  相似文献   

10.
11.
To investigate the mechanism of trifluorothymidine (TFT)-induced DNA damage, we developed an enzymatic method for the synthesis of single-strand oligonucleotides containing TFT-monophosphate residues. Sixteen-mer oligonucleotides and 14-mer 5′-phosphorylated oligonucleotides were annealed to the template of 25-mer, so as to empty one nucleotide site. TFT-triphosphate was incorporated into the site by DNA polymerase and then ligated to 5′-phosphorylated oligonucleotides by DNA ligase. The synthesized 31-mer oligonucleotides containing TFT residues were isolated from the 25-mer complementary template by denaturing polyacrylamide electrophoresis. Using these single-strand oligonucleotides containing TFT residues, the cleavage of TFT residues from DNA, using mismatch uracil-DNA glycosylase (MUG) of E.coli origin, was compared with that of 5-fluorouracil (5FU) and 5-bromodeoxyuridine (BrdU). The TFT/A pair was not cleaved by MUG, while the other pairs, namely, 5FU/A, 5FU/G, BrdU/A, BrdU/G, and TFT/G, were easily cleaved from each synthesized DNA. Thus, this method is useful for obtaining some site-specifically modified oligonucleotides.  相似文献   

12.
A form of DNA polymerase alpha was purified several thousandfold from a protein extract of Xenopus laevis eggs. The enzyme effectively converts, in the presence of ribonucleoside triphosphates, a circular single-stranded phage fd DNA template into a double-stranded DNA form and, therefore, must be associated with a DNA primase. We first show by gel electrophoresis in the presence of sodium dodecyl sulfate that both enzymatic activities, DNA polymerase and primase, most probably reside on a greater than 100 000-Da subunit of the DNA polymerase holoenzyme. We then assayed the polymerase-primase at various template/enzyme ratios and found that the DNA complementary strand sections synthesized in vitro belong to defined size classes in the range of 600-2000 nucleotides, suggesting preferred start and/or stop sites on the fd DNA template strand. We show that the stop sites coincide with stable hairpin structures in fd DNA. We have used a fd DNA template, primed by a restriction fragment of known size, to show that the polymerase-primase stops at the first stable hairpin structure upstream from the 3'-OH primer site when the reaction was carried out at 0.1 mM ATP. However, at 2 mM ATP the enzyme was able to travers this and other stop sites on the fd DNA template strand leading to the synthesis of 2-4 times longer DNA strands. Our results suggest a role for ATP in the polymerase-primase-catalyzed chain-elongation reaction.  相似文献   

13.
We investigated the incorporation of oxidatively modified guanine residues in DNA using three DNA polymerases, Escherichia coli Kf exo+, Kf exo-, and Taq DNA polymerase. We prepared nucleoside 5'-triphosphates with modified bases (dN (ox)TP) including imidazolone associated with oxazolone (dIzTP/dZTP), dehydroguanidinohydantoin (dOGhTP), and oxaluric acid (dOxaTP). We showed that the single-nucleotide incorporation of these dN (ox)TP at the 3'-end of a primer DNA strand was possible opposite C or G for dIzTP/dZTP, opposite C for dOGhTP using the Klenow fragment, and opposite C for dOxaTP using Taq. The efficiency of these misincorporations was compared to that of the nucleoside 5'-triphosphate modified with the mutagenic guanine lesion 8-oxo-G opposite A or C as well as to that of the natural dNTPs. The reaction was found not competitive. However, the ability of Kf exo- to further copy the whole template DNA strand from the primer carrying one modified residue at the 3'-end proved to be easy and rapid. The two-step polymerization process consisting of the single-nucleotide extension followed by the full extension of a primer afforded a method for the preparation of tailored double-stranded DNA oligonucleotides carrying a single modified base at a precise site on any sequence. This very rapid method allowed the incorporation of unique residues in DNA that were not available before due to their unstable character.  相似文献   

14.
15.
16.
We studied recognition and binding of synthetic template-primers by Drosophila DNA polymerase alpha (pol alpha) holoenzyme. The template-primers used contained either mismatched base pairs at various positions in the primer region or exocyclic propanodeoxyguanosine (PdG) adducts at various positions in both template and primer.pol alpha requires primer-terminal complementarity of greater than or equal to 4 base pairs for efficient binding and incorporation. When a mismatched base pair is at the -4 position relative to the 3'-primer terminus, minimal but detectable binding occurs. This is consistent with the ability of pol alpha to incorporate a single nucleotide on a template-primer containing a mismatch at this position, but at a rate of only 7% relative to incorporation on a perfectly matched template-primer. No binding or incorporation (less than 1% of incorporation on a perfectly matched template-primer) was evident when a mismatched base pair was at the -3 position or closer, relative to the 3'-primer terminus. Similar results were obtained when PdG was placed at various positions in the primer region. When a PdG residue was located in the template region (+ 3 position relative to the 3'-primer terminus), single-nucleotide incorporation was stimulated 3-4-fold. These observations suggest that there are intrinsic aspects to the mechanism of nucleotide incorporation by pol alpha which ensure the fidelity of DNA synthesis by this enzyme and may provide novel insights into the fundamental mechanism of polymerase translocation along templates.  相似文献   

17.
We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rather than delta-like) nature of the DNA polymerase. Using a poly(dT) template, the primase-devoid DNA polymerase alpha species elongated an oligo(rA10) primer up to 51-fold more effectively than an oligo(dA10) primer. In direct contrast, the DNA polymerase DNA primase alpha complex showed only a 4.6-fold preference for oligoribonucleotide primers at the same template/primer ratio. The catalytic differences between the two DNA polymerase alpha species were most dramatic at a template/primer ratio of 300. The primase-devoid DNA polymerase alpha species was found at high levels throughout oocyte and embryonic development. This suggests that the primase-devoid DNA polymerase alpha species could play a physiological role during DNA chain elongation in vivo, even if it is chemically related to DNA polymerase DNA primase alpha.  相似文献   

18.
K Collins  C W Greider 《The EMBO journal》1995,14(21):5422-5432
Telomerase is a ribonucleoprotein (RNP) DNA polymerase involved in telomere synthesis. A short sequence within the telomerase RNA component provides a template for de novo addition of the G-rich strand of a telomeric simple sequence repeat onto chromosome termini. In vitro, telomerase can elongate single-stranded DNA primers processively: one primer can be extended by multiple rounds of template copying before product dissociation. Telomerase will incorporate dNTPs or ddNTPs and will elongate any G-rich, single-stranded primer DNA. In this report, we show that Tetrahymena telomerase was able to incorporate a ribonucleotide, rGTP, into product polynucleotide. Synthesis of the product [d(TT)r(GGGG)]n was processive, suggesting that the chimeric product remained associated with the enzyme both at the active site and at a second, previously characterized, template-independent product binding site. As predicted by this finding, RNA-containing oligonucleotides served as primers for elongation. More than 3 nt of RNA at a primer 3' end decreased the quantity of product synthesis but increased the affinity of the primer for telomerase. Thus, RNA-containing primers were effective as competitive inhibitors of DNA primer elongation by telomerase. These results support the possible evolutionary origin of telomerase as an RNA-dependent RNA polymerase.  相似文献   

19.
Calf thymus DNA polymerase alpha-primase, human placenta DNA polymerase alpha-primase and human placenta DNA primase synthesized oligoriboadenylates of a preferred length of 2-10 nucleotides and multimeric oligoribonucleotides of a modal length of about 10 monomers on a poly(dT) template. The dimer and trimer were the prevalent products of the polymerization reaction. However, only the oligonucleotides from heptamers to decamers were elongated efficiently by DNA polymerase alpha.  相似文献   

20.
The Klenow fragment-mediated in vitro DNA elongation was inhibited by the presence of a class of modified cytosines in the template DNA, i.e., the N4-amino(and -methoxy)-5,6-dihydrocytosine-6-sulfonate residues. We have studied the mechanism of the blockage, using as templates bisulfite-hydrazine (and -methoxyamine)- modified single strand phage-M13mp2 DNA and synthetic oligonucleotides. Both N4-amino-5,6-dihydrocytosine-6-sulfonate and N4-methoxy-5,6-dihydrocytosine-6-sulfonate residues blocked the elongation at one nucleotide before these sites. In this blockage, the idling of polymerase at the lesion site due to its 3'-5' exonuclease action appears not to play a major role, because Sequenase that lacks the 3'-5' exonuclease activity still could not readthrough these sites. It seems possible that conformational distortion of the template near these sites is responsible for the blockage, because on conversion of this 5,6-dihydropyrimidine-6-sulfonate structure into a planar pyrimidine, a complete restoration of polymerase-readthrough resulted. In the presence of RecA and SSB proteins, the Klenow fragment was able to partially readthrough these sites. Since there was no decrease in the 3'-5' exonuclease activity during this readthrough, it seems that the binding of these proteins relaxes the distortion in the modified template to allow the polymerase to readthrough the lesion site. These sites on phage DNA can be lethal but also are capable of inducing C-to-T transitions. This observation suggests that these sites can be read by E. coli DNA polymerases in vivo with accompanying errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号