首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we used the non-carotenogenic yeast Pichia pastoris X33 as a receptor for β-carotene-encoding genes, in order to obtain new recombinant strains capable of producing different carotenoidic compounds. We designed and constructed two plasmids, pGAPZA-EBI* and pGAPZA-EBI*L*, containing the genes encoding lycopene and β-carotene, respectively. Plasmid pGAPZA-EBI*, expresses three genes, crtE, crtB, and crtI*, that encode three carotenogenic enzymes, geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, respectively. The other plasmid, pGAPZA-EBI*L*, carried not only the three genes above mentioned, but also the crtL* gene, that encodes lycopene β-cyclase. The genes crtE, crtB, and crtI were obtained from Erwinia uredovora, whereas crtL* was cloned from Ficus carica (JF279547). The plasmids were integrated into P. pastoris genomic DNA, and the resulting clones Pp-EBI and Pp-EBIL were selected for either lycopene or β-carotene production and purification, respectively. Cells of these strains were investigated for their carotenoid contents in YPD media. These carotenoids produced by the recombinant P. pastoris clones were qualitatively and quantitatively analyzed by high-resolution liquid chromatography, coupled to photodiode array detector. These analyses confirmed that the recombinant P. pastoris clones indeed produced either lycopene or β-carotene, according to the integrated vector, and productions of 1.141 μg of lycopene and 339 μg of β-carotene per gram of cells (dry weight) were achieved. To the best of our knowledge, this is the first time that P. pastoris has been genetically manipulated to produce β-carotene, thus providing an alternative source for large-scale biosynthesis of carotenoids.  相似文献   

2.
The heterologous synthesis of lycopene in non-carotenogenic Escherichia coli required the introduction of the biosynthesis genes crtE, crtB, and crtI. Recombinant E. coli strains, expressing each lycopene biosynthesis gene from Pantoea ananatis using multi-copy plasmid or single-copies after stable chromosomal integration, were cultivated and the formation of lycopene was investigated. The different expression conditions significantly influenced the lycopene formation as well as the growth behaviour. High plasmid expression levels of crtI with a single copy background of crtE and crtB in E. coli led to a predominate synthesis of tetradehydrolycopene at 253 μg g−1 (cdw).  相似文献   

3.
Cellular targeting of lycopene biosynthetic enzymes was investigated in Pichia pastoris X-33. Three lycopene pathway enzymes, CrtE, CrtB, and CrtI, were fused to fluorescent EGFPs with or without a peroxisomal targeting sequence (PTS1) and then expressed in P. pastoris. When P. pastoris was grown in YPD, the PTS1 fusion enzymes were found to be localized in peroxisomes, whereas the enzymes not fused with PTS1 were equally distributed throughout the entire cell. A similar targeting pattern was also observed in P. pastoris strains that were grown in peroxisome-proliferating medium, YPOT. Analysis of the fluorescent images of isolated peroxisomes showed that the PTS1 fused enzymes were dominantly present in peroxisomes whereas small amount of the enzymes not fused with PTS1 were non-specifically sent to peroxisomes. These results indicate that PTS1 specifically target lycopene pathway enzymes into peroxisomes and this targeting pathway was strong enough to overcome their inherent targeting program. In conclusion, we first showed that carotenogenic enzymes can be targeted into the specific cellular location of recombinant hosts and this targeting strategy can serve as the basis for the subsequent development of sophisticated pathway engineering in microorganisms.  相似文献   

4.
Carotenoids are of great commercial interest and attempts are made to produce different carotenoids in transgenic bacteria and yeasts. Development of appropriate systems and optimization of carotenoid yield involves transformation with several new genes on suitable plasmids. Therefore, the non-carotenogenic bacterium Escherichia coli JM101 was transformed in our study with several genes that mediated the biosynthetic production of the carotenoid zeaxanthin in this host. Selection of plasmids for the introduction of five essential genes for zeaxanthin formation showed that a pACYC-derived plasmid was the best. Multiplasmid transformation generally decreased production of zeaxanthin. By cotransformation with different plasmids, limitations in the biosynthetic pathway were found at the level of geranylgeranyl-pyrophosphate synthase and β-carotene hydroxylase. In our study a maximum zeaxanthin content of 289 μg/g dry weight was obtained. This involved the construction of a plasmid that mediated high-level expression of β-carotene hydroxylase. The level of expression was demonstrated on protein gels and solubilization by the mild detergent Brij 78 revealed that a significant portion of the expressed enzyme is located in the E. coli membranes where it can exert its catalytic function. Based on the results obtained, new strategies for vector construction and strain selection were proposed which could increase the present concentrations drastically. Optimal growth conditions of the transfomed E. coli strains for carotenoid formation were found at a temperature of 28 °C and a cultivation period of 2 days. Received: 28 November 1996 / Received revision: 24 March 1997 / Accepted: 27 April 1997  相似文献   

5.
To improve the expression level of recombinant Drosophila melanogaster AChE (R-DmAChE) in Pichia pastoris, the cDNA of DmAChE was first optimized and synthesized based on the preferred codon usage of P. pastoris. The synthesized AChE cDNA without glycosylphosphatidylinositol (GPI) signal peptide sequence was then ligated to the P. pastoris expression vector, generating the plasmid pPIC9K/DmAChE. The linearized plasmid was homologously integrated into the genome of P. pastoris GS115 via electrotransformation. Finally seven transformants with high expression level of R-DmAChE activity were obtained. The highest production of R-DmAChE in shake-flask culture after 5-day induction by methanol was 718.50 units/mL, which was about three times higher than our previous expression level of native DmAChE gene in P. pastoris. Thus, these new strains with the ability to secret R-DmAChE in the medium could be used for production of R-DmAChE to decrease the cost of the enzyme expense for rapid detection of organophosphate and carbamate insecticide residues.  相似文献   

6.
The methylotrophic yeasts Pichia pastoris and Pichia angusta (Hansenula polymorpha) were used for the comparative heterologous production of two model mammalian proteins of pharmaceutical interest, the NK1-fragment (22 kDa) of human hepatocyte growth factor and the extracellular domain (28 kDa) of mouse tissue factor (MTF). Both recombinant proteins were engineered to contain an N-terminal Strep- (WSHPQFEK) and a C-terminal His6-tag. In addition, both proteins contained the pre-pro-sequence of Saccharomyces cerevisiae mating factor alpha to allow secretion. Following vector construction, transformation and zeocin amplification, the best Pichia producers were identified in a screening procedure using Western blot and a Luminex xMAP™ based high-throughput method. Recombinant NK1-fragment and MTF were purified from culture supernatants of the best producers by affinity chromatography (Ni–nitrilotriacetic acid columns). Using P. pastoris as a host for the synthesis of NK1-fragment a protein yield of 5.7 mg/l was achieved. In comparable expression experiments P. angusta yielded 1.6 mg/l of NK1-fragment. NK1-fragment apparently was not glycosylated in either system. For the production of MTF, P. pastoris was also the superior host yielding 1.2 mg/l glycosylated recombinant protein whereas P. angusta was clearly less efficient (<0.2 mg/l MTF). For both expression systems no correlation between the amount of recombinant protein and the copy number of the chromosomally integrated heterologous genes was found. In P. pastoris strains less degradation of the two model recombinant proteins was observed. Altogether, this paper provides a structured protocol for rapidly identifying productive Pichia strains for the synthesis of full-length recombinant proteins.  相似文献   

7.
Carotenoids are isoprenoid pigments of industrial and nutritional interest. Although they are produced in non-carotenogenic Escherichia coli engineered with the appropriate biosynthetic genes, only a limited pool of their metabolic precursors is available in these bacteria. We have compared the production of carotenoids (lycopene) in strains in which the supply of precursors was enhanced either by upregulating the endogenous pathway via overexpression of deoxyxylulose 5-phosphate synthase (DXS) or by incorporating an exogenous MVA+ operon. In strains expressing DXS under the control of a leaky IPTG-inducible promoter, lycopene accumulation was increased up to 8-fold in the absence of inducer. Addition of IPTG, however, negatively affected lycopene production. Although induction of too high levels of the MVA+ operon enzymes also appeared to cause interference with cell metabolism, supplementation with mevalonate (to be metabolized into carotenoid precursors) resulted in a 10-fold increase in lycopene levels in cells with a near wild-type background. An additional 2-fold increase (up to 228 mg/l) was obtained using an engineered BL21 strain. These results confirm that the MVA+ pathway is most convenient to upregulate the production of carotenoids (lycopene) production in E. coli but that factors other than precursor supply should be considered for high pigment accumulation levels.  相似文献   

8.
Pichia pastoris was used to express a recombinant scFv antibody against methamidophos derived from a recombinant phage-display library. The specific scFv gene was amplified from a positive clone and then subcloned into the expression vector pPICZα C. The resulting plasmid, pPICZα C–scFv, was linearized and transformed into P. pastoris (X-33). A transformant named X-33-Pp-Met-28D4, which showed strong expression of antibodies, was isolated, and the culture conditions were optimized. Under optimal conditions, P. pastoris cultures yielded much higher levels of scFv product than the Escherichia coli expression system. Immunochemical characterization of the scFv antibodies produced in P. pastoris indicated that the affinity and specificity of scFv against methamidophos are comparable to those of scFv antibodies produced in E. coli. Recoveries of methamidophos-fortified samples demonstrated that the P. pastoris-derived scFv antibodies can be used to determine the content of methamidophos residue in environmental and agricultural samples. For our purposes, expression in Pichia proved to be an efficient and economical method for the large-scale production of functional scFv antibodies against methamidophos for downstream applications.  相似文献   

9.
Recombinant lycopene was generated by utilizing metabolically engineered Escherichia coli with yields being dependent upon inocula state. Yields were especially low in the case of cultures harboring high-copy plasmids that were established with inocula at the stationary growth phase. On the other hand, cultures derived using low-copy plasmid, however, yielded high amounts of lycopene irrespective of inocula state. Nevertheless, it showed still an inocula dependence pattern in lycopene productivity (mg/l/h). To further increase lycopene productivity, we applied a temperature-shift culture technique (37  25 °C). Using this method, we effectively enhanced lycopene productivity without any problematic phenomena. As a result, we were able to increase lycopene yield by approximately 20% compared to previous culture methods. In the present study, we were able to reach a final lycopene yield up to 260 mg/l for 60 h, which corresponds to the highest titer to date for the production of lycopene in E. coli.  相似文献   

10.
The xylanase gene xyn II from Aspergillus usamii E001 was placed under the control of an alcohol oxidase promoter (AOX1) in the plasmid pPIC9K and integrated into the genome of a methylotrophic yeast, P. pastoris GS115, by electroporation. His+ transformants were screened for on the basis of their resistance to G418 and activity assay. A transformant, P. pastoris GSC12, which showed resistance to over 6 mg G418/ml and highest xylanase activity was selected. Recombinant xylanase was secreted by P. pastoris GSC12 24 h after methanol induction of shake-flask cultures, and reached a final yield of 3139. About 68 U/mg 120 h after the induction. The molecular mass of this xylanase was estimated to be 21 kDa by SDS-PAGE. The optimum pH and temperature were 4.2 and 50 °C, respectively. Xylanase was stable below 50 °C and within pH 3.0–7.0. Its activity was increased by EDTA and Co2+ ion and strongly inhibited by Mn2+, Li+ and Ag+ ions. The K m and V max values with birchwood xylan as the substrate were found to be 5.56 mg/ml and 216 μmol/mg/min, respectively. This is the first report on expression and characterization of xylanase from A. usamii in P. pastoris. The hydrolysis products consisted of xylooligosaccharides together with a small amount of xylose. This property made the enzyme attractive for industrial purposes, as relatively pure xylooligosaccharides could be obtained.  相似文献   

11.
Analysis of the structural properties of pYC2, a cryptic plasmid from Lactobacillus sakei BM5 isolated from kimchi, determined its length as 1,970 bp with a G + C content of 34%. The double-strand origin (dso) and single-strand origin (sso) of rolling-circle replicating plasmids were found in the nucleotide sequence of the pYC2 plasmid. Sequence analysis of pYC2 revealed that ORF 1 and ORF 2 showed high homology with the Cop and Rep proteins encoded by the pMV158 family of plasmids replicating via the rolling-circle mechanism. pYC2 also replicates by this mechanism, as confirmed by Southern hybridization analysis.  相似文献   

12.
A novel method is proposed to produce both phytase and single-cell protein in recombinant Pichia pastoris fermentation using monosodium glutamate wastewater (MSGW) as the basal medium. Recombinant P. pastoris MR33 transformed with a phytase gene (AppA-m) from Escherichia coli was constructed and showed capability to utilize ammonium as the only nitrogen source. The fermentation medium was optimized in shake flasks by single-factor test and response surface methodology. A fed-batch system containing 30% MSGW, 50 g/l glucose, 1.58 g/l CaSO4, 5.18 g/l MgSO4 and 6.67 g/l KH2PO4 was developed in a 3.7-l bioreactor. The maximum phytase activity in the MSGW medium reached 3,380 U/ml, 84.2% of that in chemically defined medium, and the dry cell weight was 136 g/l. The single-cell protein (SCP; 46.66% dry cell weight) contains a variety of amino acids and is low in fat, which is ideal for utilization in animal feed. Thus, it is feasible to use MSGW medium for the production of enzymes that can be expressed in P. pastoris.  相似文献   

13.
A carotenoid synthesis gene cluster was isolated from a marine bacterium Algoriphagus sp. strain KK10202C that synthesized flexixanthin. Seven genes were transcribed in the same direction, among which five of them were involved in carotenoid synthesis. This cluster had a unique gene organization, with an isoprenoid gene, ispH (previously named lytB), being present among the carotenoid synthesis genes. The lycopene β-cyclase encoded by the crtY cd gene appeared to be a fusion of bacterial heterodimeric lycopene cyclase CrtYc and CrtYd. This was the first time that a fusion-type of lycopene β-cyclase was reported in eubacteria. Heterologous expression of the Algoriphagus crtY cd gene in lycopene-accumulating Escherichia coli produced bicyclic β-carotene. A biosynthesis pathway for monocyclic flexixanthin was proposed in Algoriphagus sp. strain KK10202C, though several of the carotenoid synthesis genes not linked with the cluster have not yet been cloned.  相似文献   

14.
We have engineered a conventional yeast, Saccharomyces cerevisiae, to confer a novel biosynthetic pathway for the production of β-carotene and lycopene by introducing the bacterial carotenoid biosynthesis genes, which are individually surrounded by the promoters and terminators derived from S. cerevisiae. β-Carotene and lycopene accumulated in the cells of this yeast, which was considered to be a result of the carbon flow for the ergosterol biosynthetic pathway being partially directed to the pathway for the carotenoid production.  相似文献   

15.
The phospholipase c (plc) gene from Bacillus cereus was cloned into the pPICZC vector and integrated into the genome of Pichia pastoris. The phospholipase C (PLC) when expressed in P. pastoris was fused to the -factor secretion signal peptide of Saccharomyces cerevisiae and secreted into a culture medium. Recombinant P. pastoris X-33 had a clear PLC band at 28.5 kDa and produced an extracellular PLC with an activity of 678 U mg–1 protein which was more than a recombinant P. pastoris GS115 (552 U mg–1 protein) or KM71H (539 U mg–1 protein). The PLCs were purified using a HiTrap affinity column with a specific activity of 1335 U mg–1 protein by P. pastoris GS115, 1176 U mg–1 protein by P. pastoris KM71H and 1522 U mg–1 protein by P. pastoris X-33. The three recombinant PLCs had high PLC activity in the low pH range of 4-5 and higher thermal stability (e.g. stable at 75 °C) than the wild-type PLC from B. cereus. Some organic solvents, surfactants and metal ions, e.g. methanol, acetone, Co2+ and Mn2+ etc., also influenced the activity of the recombinant PLCs.  相似文献   

16.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

17.

Background  

A traditional concept in bacterial genetics states that housekeeping genes, those involved in basic metabolic functions needed for maintenance of the cell, are encoded in the chromosome, whereas genes required for dealing with challenging environmental conditions are located in plasmids. Exceptions to this rule have emerged from genomic sequence data of bacteria with multipartite genomes. The genome sequence of R. etli CFN42 predicts the presence of panC and panB genes clustered together on the 642 kb plasmid p42f and a second copy of panB on plasmid p42e. They encode putative pantothenate biosynthesis enzymes (pantoate-β-alanine ligase and 3-methyl-2-oxobutanoate hydroxymethyltransferase, respectively). Due to their ubiquitous distribution and relevance in the central metabolism of the cell, these genes are considered part of the core genome; thus, their occurrence in a plasmid is noteworthy. In this study we investigate the contribution of these genes to pantothenate biosynthesis, examine whether their presence in plasmids is a prevalent characteristic of the Rhizobiales with multipartite genomes, and assess the possibility that the panCB genes may have reached plasmids by horizontal gene transfer.  相似文献   

18.
Diseases caused by rust fungi pose a significant threat to global plant production. Although carotenoid pigments are produced in spores of nearly all rust species, the corresponding biosynthesis pathway(s) have not been investigated. Here, candidate genes for carotenoid biosynthesis in Puccinia graminis f. sp. tritici (Pgt) were identified, cloned and functionally complemented using specifically engineered strains of Escherichia coli. A part of the carotenoid biosynthesis pathway in rust fungi was elucidated, with only two genes, CrtYB and CrtI, catalysing the reactions from geranyl–geranyl diphosphate (GGPP) to γ-carotene. The CrtYB gene encodes a bi-functional lycopene cyclase/phytoene synthase, which catalyses the condensation of two GGPP into phytoene, as well as the cyclisation of the ψ-end of lycopene to form γ-carotene. The CrtI gene encodes a phytoene desaturase that carries out four successive desaturations of phytoene, through the intermediates phytofluene and neurosporene to lycopene. The evolution of carotenoid pigmentation in rust fungi, including Pgt, P. graminis avenae, P. graminis secalis (Pgs), P. graminis lolli, P. striiformis f. sp. tritici, P. striiformis f. sp. pseudohordei, P. striiformis f. sp. hordei, the “scabrum” rust (putative hybrids between Pgt and Pgs), P. triticina, and P. hordei, was investigated by phylogenetic analysis. Both CrtYB and CrtI were found to be closely related among rust fungi, other pathogenic fungi, and some aphids. Our results provide a springboard to increase the understanding of the physiological role(s) of carotenoid pigments in rust fungi, to better understand evolution within the Pucciniales, and to develop robust molecular diagnostics for rust fungi.  相似文献   

19.
A gene bank of the phototrophic bacterium Rhodopseudomonas capsulata was constructed using the binary plasmid system pRK290/pRK2013. Fragments of about 20 kb of chromosomal DNA of R. capsulata strain 37b4 were inserted into the cloning vector pRK290. The hybrid plasmids of the gene bank, maintained in Escherichia coli HB101 were transferred by conjugation to R. capsulata strains defective in the photosynthetic apparatus with frequencies of 5×10-4 to 5×10-2. Phototrophically growing transconjugants occurred with frequencies of 5×10-7 to 5×10-6. Recombination between the hybrid plasmids and the R. capsulata chromosome was shown. The hybrid plasmid pRCF1002, carrying a 25 kb insert of R. capsulata wild type DNA, was isolated from one E. coli clone of the gene bank. It reconstituted some bacteriochlorophyll- and photosynthetic negative mutants to phototrophic growth.Abbreviations Bchl Bacteriochlorophyll - RC reaction center - LH light-harvesting complex - Crt carotenoid - pho phototrophic growth - P Bchl precursor excreted, the number behind P indicates the maximum of absorption in ether (nm) - SDS sodium dodecyl sulfate - Tc tetracycline - Km kanamycin - Gm gentamicin - r resistant - kb kilo base pairs Dedicated to Hans-Günter Schlegel on occasion of his 60th birthday  相似文献   

20.
Various yeast strains were examined for the microbial reduction of ethyl-3-oxo-3-phenylpropanoate (OPPE) to ethyl-(S)-3-hydroxy-3-phenylpropanoate (S-HPPE), which is the chiral intermediate for the synthesis of a serotonin uptake inhibitor, Fluoxetine. Kluyveromyces lactis KCTC 7133 was found as the most efficient strain in terms of high yield (83% at 50 mM) and high optical purity ee > 99% of S-HPPE. Based on the protein purification, activity analysis and the genomic analysis, a fatty acid synthase (FAS) was identified as the responsible β-ketoreductase. To increase the productivity, a recombinant Pichia pastoris GS115 over-expressing FAS2 (α-subunit of FAS) of K. lactis KCTC7133 was constructed. In the optimized media condition, the recombinant P. pastoris functionally over-expressed the FAS2. Recombinant P. pastoris showed 2.3-fold higher reductase activity compared with wild type P. pastoris. With the recombinant P. pastoris, the 91% yield of S-HPPE was achieved at 50 mM OPPE maintaining the high optical purity of the product (ee > 99%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号