首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endonuclease VIII from Escherichia coli is a DNA glycosylase/lyase that removes oxidatively damaged bases. EndoVIII is a functional homologue of endonuclease III, but a sequence homologue of formamidopyrimidine-DNA glycosylase (Fpg). Using multiple sequence alignments, we have identified six target residues in endoVIII that may be involved in the enzyme's glycosylase and/or lyase functions: the N-terminal proline, and five acidic residues that are completely conserved in the endoVIII-Fpg proteins. To investigate the contribution of these residues, site-directed mutagenesis was used to create seven mutants: P2T, E3D, E3Q, E6Q, D129N, D160N, and E174Q. Each mutant was assayed both for lyase activity on abasic (AP) sites and for glycosylase/lyase activity on 5-hydroxyuracil, thymine glycol, and gamma-irradiated DNA with multiple lesions. The P2T mutant did not have lyase or glycosylase/lyase activity but could efficiently form Schiff base intermediates on AP sites. E6Q, D129N, and D160N behaved essentially as endoVIII in all assays. E3D, E3Q, and E174Q retained significant AP lyase activity but had severely diminished or abolished glycosylase/lyase activities on the DNA lesions tested. These studies provide detailed predictions concerning the active site of endoVIII.  相似文献   

2.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the ‘coumaroyl binding pocket’ in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.  相似文献   

3.
The role of the polymorphism Met or Val in position 129 in the human prion protein is well documented regarding disease susceptibility and clinical manifestations. However, little is known about the molecular background to this phenomenon. We investigated herein the conformational stability, amyloid fibrillation kinetics, and seeding propensity of different 129 mutants, located in β-strand 1 of PrP (Met(129) (WT), M129A, M129V, M129L, M129W, M129P, M129E, M129K, and M129C) in HuPrP(90-231). The mutations M129V, M129L, M129K, and M129C did not affect stability (midpoints of thermal denaturation, T(m) = 65-66 °C), whereas the mutants M129A and M129E and the largest side chain M129W were destabilized by 3-4 °C. The most destabilizing substitution was M129P, which lowered the T(m) by 7.2 °C. All mutants, except for M129C, formed amyloid-like fibrils within hours during fibril formation under near physiological conditions. Fibril-forming mutants showed a sigmoidal kinetic profile and showed shorter lag times during seeding with preformed amyloid fibrils implicating a nucleated polymerization reaction. In the spontaneous reactions, the lag time of fibril formation was rather uniform for the mutants M129A, M129V, and M129L resembling the wild type. When the substituted amino acid had a distinct feature discriminating it from the wild type, such as size (M129W), charge (M129E, M129K), or rotational constraint (M129P), the fibrillation was impeded. M129C did not form ThT/Congo red-positive fibrils, and non-reducing SDS-PAGE of M129C during fibrillation conditions at different time points revealed covalent dimer formation already 15 min after fibrillation reaction initiation. Position 129 appears to be a key site for dictating PrP receptiveness toward recruitment into the amyloid state.  相似文献   

4.
The amino acid binding domains of the tryptophanyl (TrpRS)- and tyrosyl-tRNA synthetases (TyrRS) of Bacillus stearothermophilus are highly homologous. These similarities suggest that conserved residues in TrpRS may be responsible for both determining tryptophan recognition and discrimination against tyrosine. This was investigated by the systematic mutation of TrpRS residues based upon the identity of homologous positions in TyrRS. Of the four residues which interact directly with the aromatic side chain of tryptophan (Phe5, Met129, Asp132, and Val141) replacements of Asp132 led to significant changes in the catalytic efficiency of Trp aminoacylation (200-1250-fold reduction in k(cat)/K(M)) and substitution of Val141 by the larger Glu side chain reduced k(cat)/K(M) by 300-fold. Mutation of Pro127, which determines the position of active-site residues, did not significantly effect Trp binding. Of the mutants tested, D132N TrpRS also showed a significant reduction in discrimination against Tyr, with Tyr acting as a competitive inhibitor but not a substrate. The analogous residue in B. stearothermophilusTyrRS (Asp176) has also been implicated as a determinant of amino acid specificity in earlier studies [de Prat Gay, G., Duckworth, H. W., and Fersht, A. R. (1993) FEBS Lett. 318, 167-171]. This striking similarity in the function of a highly conserved residue found in both TrpRS and TyrRS provides mechanistic support for a common origin of the two enzymes.  相似文献   

5.
A collection of pediocin AcH amino acid substitution mutants was generated by PCR random mutagenesis of DNA encoding the bacteriocin. Mutants were isolated by cloning mutagenized DNA into an Escherichia coli malE plasmid that directs the secretion of maltose binding protein-pediocin AcH chimeric proteins and by screening transformant colonies for bactericidal activity against Lactobacillus plantarum NCDO955 (K. W. Miller, R. Schamber, Y. Chen, and B. Ray, 1998. Appl. Environ. Microbiol. 64:14–20, 1998). In all, 17 substitution mutants were isolated at 14 of the 44 amino acids of pediocin AcH. Seven mutants (N5K, C9R, C14S, C14Y, G37E, G37R, and C44W) were completely inactive against the pediocin AcH-sensitive strains L. plantarum NCDO955, Listeria innocua Lin11, Enterococcus faecalis M1, Pediococcus acidilactici LB42, and Leuconostoc mesenteroides Ly. A C24S substitution mutant constructed by other means also was inactive against these bacteria. Nine other mutants (K1N, W18R, I26T, M31T, A34D, N41K, H42L, K43N, and K43E) retained from <1% to ~60% of wild-type activity when assayed against L. innocua Lin11. One mutant, K11E, displayed ~2.8-fold-higher activity against this indicator. About one half of the mutations mapped to amino acids that are conserved in the pediocin-like family of bacteriocins. All four cysteines were found to be required for activity, although only C9 and C14 are conserved among pediocin-like bacteriocins. Several basic amino acids as well as nonpolar amino acids located within the hydrophobic C-terminal region also were found to be important. The mutations are discussed in the context of structural models that have been proposed for the bacteriocin.  相似文献   

6.
Back JH  Park JH  Chung JH  Kim DS  Han YS 《DNA Repair》2006,5(8):894-903
Oxidative damage represents a major threat to genomic stability because the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. We were interested in finding out how hyperthermophilic bacteria under goes the process of excising mispaired adenine from A/GO to deal with genomic oxidative damage. Herein we report the properties of an Escherichia coli MutY (EcMutY) homolog, TthMutY, derived from a hyperthermophile Thermus thermophilus. TthMutY preferentially excises on A/GO and G/GO mispairs and has additional activities on T/GO and A/G mismatches. TthMutY has significant sequence homology to the A/G and T/G mismatch recognition motifs, respectively, of MutY and Mig.MthI. A substitution from Tyr112 to Ser or Ala (Y112S and Y112A) in the putative thymine-binding site of TthMutY showed significant decrease in DNA glycosylase activity. A mutant form of TthMutY, R134K, could form a Schiff base with DNA and fully retained its DNA glycosylase activity against A/GO and A/G mispair. Interestingly, although TthMutY cannot form a trapped complex with substrate in the presence of NaBH(4), it expressed AP lyase activity, suggesting Tyr112 in TthMutY may be the key residue for AP lyase activity. These results suggest that TthMutY may be an example of a novel class of bifunctional A/GO mismatch DNA glycosylase that can also remove thymine from T/GO mispair.  相似文献   

7.
D G Stump  R S Lloyd 《Biochemistry》1988,27(6):1839-1843
T4 endonuclease V incises DNA at the sites of pyrimidine dimers through a two-step mechanism. These breakage reactions are preceded by the scanning of nontarget DNA and binding to pyrimidine dimers. In analogy to the synthetic tripeptides Lys-Trp-Lys and Lys-Tyr-Lys, which have been shown to be capable of producing single-strand scissions in DNA containing apurinic sites, endonuclease V has the amino acid sequence Trp-Tyr-Lys-Tyr-Tyr (128-132). Site-directed mutagenesis of the endonuclease V gene, denV, was performed at the Tyr-129 and at the Tyr-129 and Tyr-131 positions in order to convert the Tyr residues to nonaromatic amino acids to test their role in dimer-specific binding. The UV survival of repair-deficient (uvrA recA) Escherichia coli cells harboring the denV N-129 construction was dramatically reduced relative to wild-type denV+ cells. The survival of denV N-129,131 cells was indistinguishable from that of the parental strain lacking the denV gene. The mutant endonuclease V proteins were then characterized with regard to (1) dimer-specific nicking activity, (2) apurinic nicking activity, and (3) binding affinity to UV-irradiated DNA. Dimer-specific nicking activity and dimer-specific binding for both denV N-129 and N-129,131 were abolished, while apurinic-specific nicking was substantially retained in denV N-129,131 but was abolished in denV N-129. These results indicate that Tyr-129 and Tyr-131 positions of endonuclease V are at least important in pyrimidine dimer-specific binding and possibly nicking activity.  相似文献   

8.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in bacteria and eukaryotes, which removes uracil residues from DNA strands. Methanococcus jannaschii UDG (MjUDG), a novel monofunctional glycosylase, contains a helix-hairpin-helix (HhH) motif and a Gly/Pro rich loop (GPD region), which is important for catalytic activity; it shares these features with other glycosylases, such as endonuclease III. First, to examine the role of two conserved amino acid residues (Asp150 and Tyr152) in the HhH-GPD region of MjUDG, mutant MjUDG proteins were constructed, in which Asp150 was replaced with either Glu or Trp (D150E and D150W), and Tyr152 was replaced with either Glu or Asn (Y152E and Y152N). Mutant D150W completely lacked DNA glycosylase activity, whereas D150E displayed reduced activity of about 70% of the wild type value. However, the mutants Y152E and Y152N retained unchanged levels of UDG activity. We also replaced Glu132 in the HhH motif with a lysine residue equivalent to Lys120 in endonuclease III. This mutation converted the enzyme into a bifunctional glycosylase/AP lyase capable of both removing uracil at a glycosylic bond and cleaving the phosphodiester backbone at an AP site. Mutant E132K catalyzes a β-elimination reaction at the AP site via uracil excision and forms a Schiff base intermediate in the form of a protein-DNA complex. This text was submitted by the authors in English.  相似文献   

9.
The mitotic kinesin Eg5 plays an essential role in establishing the bipolar spindle. Recently, several antimitotic inhibitors have been shown to share a common binding region on Eg5. Considering the importance of Eg5 as a potential drug target for cancer chemotherapy it is essential to understand the molecular mechanism, by which these agents block Eg5 activity, and to determine the "key residues" crucial for inhibition. Eleven residues in the inhibitor binding pocket were mutated and the effects were monitored by kinetic analysis and mass spectrometry. Mutants R119A, D130A, P131A, I136A, V210A, Y211A and L214A abolish the inhibitory effect of monastrol. Results for W127A and R221A are less striking, but inhibitor constants are still considerably modified compared to wild-type Eg5. Only one residue, Leu214, was found to be essential for inhibition by STLC. W127A, D130A, V210A lead to increased K(i)(app) values, but binding of STLC is still tight. R119A, P131A, Y211A and R221A convert STLC into a classical rather than a tight-binding inhibitor with increased inhibitor constants. These results demonstrate that monastrol and STLC interact with different amino acids within the same binding region, suggesting that this site is highly flexible to accommodate different types of inhibitors. The drug specificity is due to multiple interactions not only with loop L5, but also with residues located in helices alpha2 and alpha3. These results suggest that tumour cells might develop resistance to Eg5 inhibitors, by expressing Eg5 point mutants that retain the enzyme activity, but prevent inhibition, a feature that is observed for certain tubulin inhibitors.  相似文献   

10.
11.
The model structure of Escherichia coli AlkA (3-methyladenine-DNA glycosylase II) protein complexed with the double helical DNA is elucidated from X-ray structures of related DNA glycosylase enzymes and mutagenic studies. The free enzyme structure has no difficulty in building the platform to afford the bended and wedge DNA with the flipped out nucleotide. The helix-hairpin-helix motif and the insertion residue L125 in free structure can be located without severe contacts. The alkylated base is surrounded with a variety of aromatic rings, such as W218, W272, Y273 and F18. The aromatic indole ring of tryptophan is a good candidate for forming the stacking with the positively charged base moiety pi-cation interaction). Some hydrophobic residues, such as V128 and L240, also attend to substrate recognition.  相似文献   

12.
A K Arthur  A Hss    E Fanning 《Journal of virology》1988,62(6):1999-2006
The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA.  相似文献   

13.
We extracted maximum information for structure-function analysis of the PSE-4 class A beta-lactamase by random replacement mutagenesis of three contiguous codons in the H4 alpha-helix at amino acid positions Ala125, Thr126, Met127, Thr128 and Thr129. These positions were predicted to interact with suicide mechanism-based inhibitors when examining the PSE-4 three-dimensional model. Structure-function studies on positions 125-129 indicated that in PSE-4 these amino acids have a role distinct from those in TEM-1, in tolerating substitutions at Ala125 and being invariant at Met127. The importance of Met127 was suspected to be implicated in a structural role in maintaining the integrity of the H4 alpha-helix structure together, thus maintaining the important Ser130-Asp131-Asn132 motif positioned towards the active site. At the structural level, the H4 region was analyzed using energy minimization of the H4 regions of the PSE-4 YAM mutant and compared with wild-type PSE-4. The Tyr 125 of the mutant YAM formed an edge to face pi-pi interaction with Phe 124 which also interacts with the Trp 210 with the same interactions. Antibiotic susceptibilities showed that amino acid changes in the the H4 alpha-helix region of PSE-4 are particularly sensitive to mechanism based-inhibitors. However, kinetic analysis of PSE-4 showed that the two suicide inhibitors belonging to the penicillanic acid sulfone class, sulbactam and tazobactam, were less affected by changes in the H4 alpha-helix region than clavulanic acid, an inhibitor of the oxypenam class. The analysis of H4 alpha-helix in PSE-4 suggests its importance in interactions with the three clinically useful inhibitors and in general to all class A enzymes.  相似文献   

14.
Human alkyladenine DNA glycosylase (AAG) locates and excises a wide variety of structurally diverse alkylated and oxidized purine lesions from DNA to initiate the base excision repair pathway. Recognition of a base lesion requires flipping of the damaged nucleotide into a relatively open active site pocket between two conserved tyrosine residues, Y127 and Y159. We have mutated each of these amino acids to tryptophan and measured the kinetic effects on the nucleotide flipping and base excision steps. The Y127W and Y159W mutant proteins have robust glycosylase activity toward DNA containing 1,N(6)-ethenoadenine (εA), within 4-fold of that of the wild-type enzyme, raising the possibility that tryptophan fluorescence could be used to probe the DNA binding and nucleotide flipping steps. Stopped-flow fluorescence was used to compare the time-dependent changes in tryptophan fluorescence and εA fluorescence. For both mutants, the tryptophan fluorescence exhibited two-step binding with essentially identical rate constants as were observed for the εA fluorescence changes. These results provide evidence that AAG forms an initial recognition complex in which the active site pocket is perturbed and the stacking of the damaged base is disrupted. Upon complete nucleotide flipping, there is further quenching of the tryptophan fluorescence with coincident quenching of the εA fluorescence. Although these mutations do not have large effects on the rate constant for excision of εA, there are dramatic effects on the rate constants for nucleotide flipping that result in 40-100-fold decreases in the flipping equilibrium relative to wild-type. Most of this effect is due to an increased rate of unflipping, but surprisingly the Y159W mutation causes a 5-fold increase in the rate constant for flipping. The large effect on the equilibrium for nucleotide flipping explains the greater deleterious effects that these mutations have on the glycosylase activity toward base lesions that are in more stable base pairs.  相似文献   

15.
Ding PZ  Wilson TH 《Biochemistry》2001,40(18):5506-5510
The melibiose carrier of Escherichia coli is a sugar-cation cotransport system that utilizes Na(+), Li(+), or H(+). This membrane transport protein consists of 12 transmembrane helices. Starting with the cysteine-less melibiose carrier, cysteine has been substituted individually for amino acids 17-37, which includes all of the residues in membrane helix I. The carriers with cysteine substitutions were studied for their transport activity and the effect of the water soluble sulfhydryl reagent p-chloro- mercuribenzenesulfonic acid (PCMBS). Cysteine substitution caused loss of transport activity in six of the mutants (G17C, K18C, D19C, Y32C, T34C, and D35C). PCMBS caused greater than 50% inhibition in eleven mutants (F20C, A21C, I22C, G23C, I24C, V25C, Y26C, M27C, Y28C, M30C, and Y31C). We suggest that the residues whose cysteine derivatives were inhibited by PCMBS face the aqueous channel and that helix I is completely surrounded by aqueous environment. Second site revertants were isolated from K18C and Y31C. The revertants were found to have mutations in helices I, IV, and VII.  相似文献   

16.
We have previously shown that the activity of NhaA is regulated by pH and found mutations that affect dramatically the pH dependence of the rate but not the K(m) (for Na(+) and Li(+)) of NhaA. In the present work, we found that helix IV is involved both in ion translocation as well as in pH regulation of NhaA. Two novel types of NhaA mutants were found clustered in trans membrane segment (TMS) IV: One type (D133C, T132C, and P129L) affects the apparent K(m) of NhaA to the cations with no significant effect on the pH profile of the antiporter; no shift of the pH profile was found when the activity of these mutants was measured at saturating Na(+) concentration. In contrast, the other type of mutations (A127V and A127T) was found to affect both the K(m) and the pH dependence of the rate of NhaA whether tested at saturating Na(+) concentration or not. These results imply that residues involved in the ion translocation of NhaA may (A127) or may not (D133, T132, and P129) overlap with those affecting the pH response of the antiporter. All mutants cluster in the N-terminal half of the putative alpha-helix IV, one type on one face, the other on the opposite. Cys accessibility test demonstrated that although D133C is located in the middle of TMS IV, it is inhibited by N-ethylmaleimide and is exposed to the cytoplasm.  相似文献   

17.
Thymine glycol, a potentially lethal DNA lesion produced by reactive oxygen species, can be removed by DNA glycosylase, Escherichia coli Nth (endonuclease III), or its mammalian homologue NTH1. We have found previously that mice deleted in the Nth homologue still retain at least two residual glycosylase activities for thymine glycol. We report herein that in cell extracts from the mNth1 knock-out mouse there is a third thymine glycol glycosylase activity that is encoded by one of three mammalian proteins with sequence similarity to E. coli Fpg (MutM) and Nei (endonuclease VIII). Tissue expression of this mouse Nei-like (designated as Neil1) gene is ubiquitous but much lower than that of mNth1 except in heart, spleen, and skeletal muscle. Recombinant NEIL1 can remove thymine glycol and 5-hydroxyuracil in double- and single-stranded DNA much more efficiently than 8-oxoguanine and can nick the strand by an associated (beta-delta) apurinic/apyrimidinic lyase activity. In addition, the mouse NEIL1 has a unique DNA glycosylase/lyase activity toward mismatched uracil and thymine, especially in U:C and T:C mismatches. These results suggest that NEIL1 is a back-up glycosylase for NTH1 with unique substrate specificity and tissue-specific expression.  相似文献   

18.
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) can form homodimers. Tax dimerization contributes to optimal Tax activity involved in transactivation of the HTLV-1 promoter. The mechanisms used to form specific Tax dimers are poorly understood because the domains that mediate such interactions have not been clearly characterized. Here we have used different approaches (the two-hybrid assay in yeast, the glutathione S-transferase pull-down assay, and the Spot method) to study Tax-Tax interactions. Our results indicate that the integrity of the sequence of Tax, except for the last 16 amino acids (residues 338 to 353), is critical, suggesting that Tax dimerization is dictated more by secondary structure than by primary structure. We were, however, able to delimit a central region involved in Tax self-association that encompasses the residues 127 to 228. This region can be divided into three subdomains of dimerization: DD1 (residues 127 to 146), DD2 (residues 181 to 194), and DD3 (residues 213 to 228). Moreover, the Tax mutants M22 (T130A and L131S) and M29 (K189A and R190S), with amino acid substitutions located in DD1 and DD2, respectively, were found to be impaired in Tax self-association.  相似文献   

19.
The human immunodeficiency virus type-1 (HIV-1) accessory protein Vif serves to neutralize the human antiviral proteins apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G [A3G]) and A3F. As such, the therapeutic blockade of Vif function represents a logical objective for rational drug design. To facilitate such endeavors, we have employed molecular genetics to define features of A3G that are required for its interaction with Vif. Using alanine-scanning mutations and multiple different substitutions at key residues, we confirm the central role played by the aspartic acid at position 128 and identify proline 129 and aspartic acid 130 as important contributory residues. The overall negative charge of this 3-amino-acid motif appears critical for recognition by Vif, as single lysine substitutions are particularly deleterious and a double alanine substitution at positions 128 and 130 is far more inhibitory than single-residue mutations at either position. Our analyses also reveal that the immediately adjacent 4 amino acids, residues 124 to 127, are important for the packaging of A3G into HIV-1 particles. Most important are tyrosine 124 and tryptophan 127, and mutations at these positions can ablate virion incorporation, as well as the capacity to inhibit virus infection. Thus, while pharmacologic agents that target the acidic motif at residues 128 to 130 have the potential to rescue A3G expression by occluding recognition by Vif, care will have to be taken not to perturb the contributions of the neighboring 124-to-127 region to packaging if such agents are to have therapeutic benefit by promoting A3G incorporation into progeny virions.  相似文献   

20.
The amino acid residues affecting the function of rat sterol 14-demethylase P450 (CYP51) were examined by means of point mutation. Forty-five mutants with respect to 27 amino acid sites were constructed and expressed in Escherichia coli. Substitution of highly conserved Y131, E369, R372, or R382 decreased the expression of CYP51 protein, indicating some structural importance of these residues. Substitution of H314, T315, or S316 caused considerable effects on the catalytic activity, and T315 was identified as the "conserved threonine" of CYP51. H314 was important for maintenance of the activity of CYP51 and was a characteristic residue of this P450, because the position corresponding to this residue is occupied by an acidic amino acid in most other P450 species. A144 was identified as a residue affecting the interaction of CYP51 with ketoconazole. Substitution of A144 with I, which occupies the corresponding position in fungal CYP51, enhanced the ketoconazole susceptibility of rat CYP51 with little change in the catalytic activity, indicating an important role of this residue in determination of the ketoconazole susceptibility of CYP51. Alteration of the catalytic activity was caused by the substitution at some other sites, whereas substitution of a few highly conserved amino acids caused little alteration of the activity of CYP51.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号