首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The series Staphyliniformia is one of the mega‐diverse groups of Coleoptera, but the relationships among the main families are still poorly understood. In this paper we address the interrelationships of staphyliniform groups, with special emphasis on Hydrophiloidea and Hydraenidae, based on partial sequences of the ribosomal genes 18S rDNA and 28S rDNA. Sequence data were analysed with parsimony and Bayesian posterior probabilities, in an attempt to overcome the likely effect of some branches longer than the 95% cumulative probability of the estimated normal distribution of the path lengths of the species. The inter‐family relationships in the trees obtained with both methods were in general poorly supported, although most of the results based on the sequence data are in good agreement with morphological studies. In none of our analyses a close relationship between Hydraenidae and Hydrophiloidea was supported, contrary to the traditional view but in agreement with recent morphological investigations. Hydraenidae form a clade with Ptiliidae and Scydmaenidae in the tree obtained with Bayesian probabilities, but are placed as basal group of Staphyliniformia (with Silphidae as subordinate group) in the parsimony tree. Based on the analysed data with a limited set of outgroups Scarabaeoidea are nested within Staphyliniformia. However, this needs further support. Hydrophiloidea s.str., Sphaeridiinae, Histeroidea (Histeridae + Sphaeritidae), and all staphylinoid families included are confirmed as monophyletic, with the exception of Hydraenidae in the parsimony tree. Spercheidae are not a basal group within Hydrophiloidea, as has been previously suggested, but included in a polytomy with other Hydrophilidae in the Bayesian analyses, or its sistergroup (with the inclusion of Epimetopidae) in the parsimony tree. Helophorus is placed at the base of Hydrophiloidea in the parsimony tree. The monophyly of Hydrophiloidea s.l. (including the histeroid families) and Staphylinoidea could not be confirmed by the analysed data. Some results, such as a placement of Silphidae as subordinate group of Hydraenidae (parsimony tree), or a sistergroup relationship between Ptiliidae and Scydmaenidae, appear unlikely from a morphological point of view.  相似文献   

2.
Abstract. One hundred and twenty-one morphological characters of larvae and adults of the series Staphyliniformia were scored (multistate coding) and analysed to determine the family group relationships of the polyphagan groups Scarabaeoidea, Histeroidea, Hydrophiloidea and Staphylinoidea. Cladograms were rooted with exemplars of Adephaga, Archostemata, Myxophaga and the polyphagan families Dascillidae, Derodontidae, Eucinetidae and Scirtidae. Analyses of the same dataset with multistate characters re-coded as presence/absence (144 characters) produced cladograms that were similar to those produced from analyses of the original characters. Cladograms produced from partitioned larval and adult characters differed strongly, with adult-only trees more similar to those produced by combined data. The results confirm the monophyly of Hydrophiloidea + Histeroidea and of Staphylinoidea (including Hydraenidae). The Epimetopidae + Georissidae are the only strongly supported clade within Hydrophiloidea. A clade comprising Hydrochidae, Spercheidae and Hydrophilidae, and a sister-group relationship between the latter two families were confirmed in analyses of the data with presence/absence coding. Helophoridae, Epimetopidae and Georissidae are probably not a monophyletic unit, and additional evidence is needed for a reliable placement of Helophoridae. Scarabaeoidea are placed as a sister taxon of Hydrophiloidea + Histeroidea, but support for this relationship is weak. The branching pattern ((Hydraenidae + Ptiliidae) + (Leiodidae + Agyrtidae)), and a clade comprising Scydmaenidae, Silphidae and Staphylinidae (= ‘staphylinid group’) are well founded. The branching pattern (Orchymontiinae + (Prosthetopinae + (Ochthebiinae + Hydraeninae))) within Hydraenidae is confirmed. Poor resolution at the base of the trees and the placement of some nonstaphyliniform taxa (Dascillidae, Derodontidae, Scirtidae and Eucinetidae) as a sister group to a clade comprising Scarabaeoidea, Hydrophiloidea and Histeroidea suggests that Staphyliniformia may be paraphyletic. It is recommended that series names are eliminated from the classification of Polyphaga, at least for the more ‘primitive’ groups.  相似文献   

3.
Phylogenetic relationships within Hydrophilidae were examined by analyses of separate and combined nuclear and mitochondrial markers (28S rRNA, 18S rRNA, 16S rRNA, 12S rRNA, COI and COII genes). The preferred (Bayesian) tree topology suggests a sister group relationship between Spercheidae and Hydrophilidae, supporting the ‘hydrophilid lineage’; Epimetopidae are placed on the base of the ‘helophorid branch’, the monophyly of Sphaeridiinae is highly supported, nested deeply within Hydrophilidae closest to Enochrus, making Hydrophilinae and Acidocerini paraphyletic; Hydrobius appears as sister taxon to (Hydrochara Hydrophilus) without a closer relationship to Acidocerini; the hydrophiloid–histeroid sister group relationship is confirmed. The topology of several taxa remains contradictory, and requires further investigations with a larger taxon sampling and additional molecular markers.  相似文献   

4.
External and internal features of the head of adults of Helophorus spp. were examined and described in detail. The 6 species under consideration show very little morphological variation. The only distinctive characters, which characterise groups of species, are the presence or absence of the mandibular retinaculum and the symmetric or asymmetric shape of the ultimate maxillary palpomere. Helophoridae is supported by several autapomorphies, e.g. a group of long hairs on the posterodorsal margin of galeomere II and the distinctly serrate hind margin of the right mola. Characters with a potential phylogenetic relevance are listed, presented as a data matrix and analysed cladistically. The monophyly of Hydrophiloidea + Histeroidea, Hydrophiloidea (excl. Hydraenidae), ((Helophoridae + Hydrochidae) + (Georissidae [+ Epimetopidae?])), Hydrophilidae and Sphaeridiinae was supported in all trees. The position of Spercheus remains ambiguous. It is either the sistergroup of the remaining Hydrophiloidea or of Hydrophilidae. Head structures of adults of Helophoridae and Hydrochidae show a remarkable similarity. The following apomorphic character states are shared by both taxa: dorsal side of labrum divided into 2 areas with different surface structure, mentum with 2 longitudinal ridges. A clade comprising these 2 families + Georissidae (and probably Epimetopidae) is supported by the metallic granulation of the dorsal side of the head capsule and a grooved frontoclypeal suture. The presence of tubular mandibular glands may be a derived groundplan feature of Hydrophiloidea + Histeroidea. The proposed interrelationships are partly in contrast to current hypothesis. The hypothesised character evolution may change, if a more extensive set of taxa (e.g. Horelophinae, Horelophopsinae) and characters, especially larval features are used (e.g. stigmatic atrium). Several derived characteristics of the clades listed above may have been secondarily lost in Hydrophilidae.  相似文献   

5.
A phylogenetic analysis using characters from egg cases, larvae, pupae and adults was conducted; the outgroups included the beetle families Silphidae, Hydraenidae and Histeridae. Characters from the immature stages were obtained mostly from material reared in the laboratory, those from the adults were obtained from Hansen's generic revision for the superfamily. The results support the position of Hydraenidae within the Staphylinoidea, and not as part of Hydrophiloidea; Histeroidea is proposed as the sister group of Hydrophiloidea. At family level two clades are distinguished; the relationships within the first clade are ((Georissidae Epimetopidae) Helophoridae), those within the second are ((Hydrophilidae Spercheidae) Hydrochidae). Larval characters were most informative at the base of the tree, especially those associated with the spiracular atrium; adult characters were most informative at the apex of the tree.  相似文献   

6.
7.
Hydrophilidae (water scavenger beetles) is well known as an aquatic beetle family; however, it contains ca. 1,000 secondarily terrestrial species derived from aquatic ancestors. The New Zealand endemic genus Rygmodus White is a member of the hydrophilid subfamily Cylominae, which is the early‐diverging taxon of the largest terrestrial lineage (Cylominae + Sphaeridiinae) within the Hydrophilidae. In this paper we report that Rygmodus beetles are pollen‐feeding flower visitors as adults, but aquatic predators as larvae. Based on analyses of gut contents and a summary of collecting records reported on museum specimen labels, adult Rygmodus beetles are generalists feeding on pollen of at least 13 plant families. Rygmodus adult mouthparts differ from those of other (saprophagous) hydrophilid beetles in having the simple scoop‐like apex and mola with roughly denticulate surface, resembling the morphology found in pollen‐feeding staphylinid beetles. Larvae were found along the sides of streams, under stones and in algal mats and water‐soaked moss; one collected larval specimen was identified using DNA barcoding of two molecular markers, mitochondrial cytochrome oxidase 1 (cox1) and nuclear histone 3 (H3). Larvae of two species, Rygmodus modestus and Rygmodus sp., are described in detail and illustrated; they closely resemble ambush‐type predatory larvae of the hydrophilid tribe Hydrophilini in the head morphology. Rygmodus is the only known hydrophilid beetle with adults and larvae inhabiting different environments.  相似文献   

8.
This checklist comprises all species of Hydrophilidae (Coleoptera: Hydrophiloidea) quoted in the literature referring to Iran and confirmed by our study. In total, 104 species within 17 genera and five subfamilies, Hydrophilinae (eight genera, 63 species), Chaetarthriinae (three genera, five species), Enochrinae (single genus, 20 species), Acidocerinae (single genus, three species) and Sphaeridiinae (four genera, 13 species), are listed for the fauna of Iran. Three species are endemic; four species are recorded here for the first time from Iran, and nine species are excluded from Iranian fauna.  相似文献   

9.
A remarkable new species of bromeliadicolous Hydrophilidae, Omicrus ingens sp.n., is described from Puerto Rico. Notes on the habitat and occurrence of the species are given. Larvae found in association with adult beetles are assigned to the same species and described as such. It is the first known larva of the sphaeridiine tribe Omicrini. Comparative notes are given to other hydrophilid larvae, particularly Sphaeridiinae, and preliminary keys to larvae are presented for known subfamilies of Hydrophilidae and known tribes of Sphaeridiinae.  相似文献   

10.
Adephaga is the second largest suborder of beetles (Coleoptera) and they serve as important arthropod predators in both aquatic and terrestrial ecosystems. The suborder is divided into Geadephaga comprising terrestrial families and Hydradephaga for aquatic lineages. Despite numerous studies, phylogenetic relationships among the adephagan families and monophyly of the Hydradephaga itself remain in question. Here we conduct a comprehensive phylogenomic analysis of the suborder using ultraconserved elements (UCEs). This study presents the first in vitro test of a newly developed UCE probe set customized for use within Adephaga that includes both probes tailored specifically for the suborder, alongside generalized Coleoptera probes previously found to work in adephagan taxa. We assess the utility of the entire probe set, as well as comparing the tailored and generalized probes alone for reconstructing evolutionary relationships. Our analyses recovered strong support for the paraphyly of Hydradephaga with whirligig beetles (Gyrinidae) placed as sister to all other adephagan families. Geadephaga was strongly supported as monophyletic and placed sister to a clade composed of Haliplidae + Dytiscoidea. Monophyly of Dytiscoidea was strongly supported with relationships among the dytiscoid families resolved and strongly supported. Relationships among the subfamilies of Dytiscidae were strongly supported but largely incongruent with prior phylogenetic estimates for the family. The results of our UCE probe comparison showed that tailored probes alone outperformed generalized probes alone, as well as the full combined probe set (containing both types of probes), under decreased taxon sampling. When taxon sampling was increased, the full combined probe set outperformed both tailored probes and generalized probes alone. This study provides further evidence that UCE probe sets customized for a focal group result in a greater number of recovered loci and substantially improve phylogenomic analysis.  相似文献   

11.
The beetle series Staphyliniformia exhibits extraordinary taxonomic, ecological and morphological diversity. To gain further insight into staphyliniform relationships and evolution, we reconstructed the phylogeny of Staphyliniformia using DNA sequences from nuclear 28S rDNA and the nuclear protein‐coding gene CAD for 282 species representing all living families and most subfamilies, a representative sample of Scarabaeiformia serving as a near outgroup, and three additional beetles as more distant outgroups. Under both Bayesian inference (BI) and maximum likelihood inference (MLI), the major taxa within Staphyliniformia are each monophyletic: (i) Staphylinoidea, (ii) Hydrophiloidea s.l., and the contained superfamilies (iii) Hydrophiloidea s.s. and (iv) Histeroidea, although Staphylinoidea and Hydrophiloidea s.l. are not strongly supported by MLI bootstrap. Scarabaeiformia is monophyletic under both methods of phylogenetic inference. However, the relative relationships of Staphylinoidea, Hydrophiloidea s.l. and Scarabaeiformia differ between BI and MLI: under BI, Staphyliniformia and Scarabaeiformia were sister groups; under MLI, Hydrophiloidea s.l. and Scarabaeiformia were sister groups and these together were sister to Staphylinoidea. The internal relationships in Scarabaeiformia were similar under both methods of phylogenetic inference, with Cetoniinae, Dynastinae + Rutelinae, Hybosoridae, Passalidae, Scarabaeidae and Scarabaeinae recovered as monophyla. Histeridae comprised two major clades: (1) Abraeinae, Trypanaeine and Trypeticinae; and (2) Chlamydopsinae, Dendrophilinae, Haeteriinae, Histerinae, Onthophilinae, Saprininae and Tribalinae. The relationships among early‐divergent Hydrophiloidea differed between BI and MLI, and overall were unresolved or received only moderate to low nodal support. The staphylinoid families Agyrtidae, Hydraenidae and Ptiliidae were recovered as monophyletic; the latter two were sister taxa, and Staphylinidae + Silphidae was also monophyletic. Silphidae was placed within Staphylinidae in close relation to a subset of Tachyporinae. Pselaphinae and Scydmaeninae were both recovered within Staphylinidae, in accordance with recent analyses of morphological characters, although not always with recently proposed sister taxa. None of the four major groups of Staphylinidae proposed by Lawrence and Newton (1982) was recovered as monophyletic. Certain highly specialized staphyliniform habits and morphologies, such as abdominal defensive glands and reduced elytra, have arisen in parallel in separate lineages. Further, our analyses support two major transitions to an aquatic lifestyle within Staphyliniformia: once within Staphylinoidea (Hydraenidae), and once within Hydrophiloidea s.l. (Hydrophiloidea s.s.). On a smaller scale, the most common transition is from litter to subcortical or to periaquatic microhabitats and the next most common is from litter to carrion and to fungi. Overall, transitions to periaquatic microhabitats were the most numerous. The broad picture in Staphyliniformia seems to be a high level of evolutionary plasticity, with multiple possible pathways to and from many microhabitat associations, and litter as a major source microhabitat for diversification. In Scarabaeiformia, the most common transitions were from litter to foliage, with flowers to litter, litter to flowers, and litter to dung being next, and then litter to roots, logs or carrion. Litter is again the largest overall source microhabitat. The most common transitions were to foliage and flowers. It thus seems that the litter environment presents ecological and evolutionary opportunities/challenges that facilitate entry of Staphyliniformia and Scarabaeiformia into ‘new’ and different ecological adaptive zones.  相似文献   

12.
The diversity of the aquatic and strictly riparian beetles of the Philippines is reviewed. A checklist (with 317 species and subspecies) of the aquatic and riparian Coleoptera of the Philippines is provided for the first time herein. This checklist covers the following families (number of species and subspecies in parentheses): Hydroscaphidae (1), Gyrinidae (15), Dytiscidae (65), Noteridae (4), Haliplidae (2), Hydraenidae (15), Hydrochidae (2), Spercheidae (1), Hydrophilidae (72), Scirtidae (49), Elmidae (23), Dryopidae (2), Psephenidae (16), Eulichadidae (1), Limnichidae (20), Heteroceridae (5), Malachiidae (5), Lampyridae (15), Nitidulidae (4). A total of 201 species and subspecies (63%) are considered to be endemic to the Philippines. Aquatic/riparian beetle genera and families that are still unrecorded but likely to occur in this country are briefly discussed. Based on estimates at the genus level, it is concluded that about 850 aquatic and riparian species can be expected to occur in the Philippines. The implication of the Philippine biogeographic history for this diversity is discussed. The potential of aquatic/riparian beetles as bioindicators is briefly examined. The dilemma of aquatic invertebrate conservation is analysed and priorities for future research are outlined.  相似文献   

13.
The beetle suborder Adephaga is traditionally divided into two sections on the basis of habitat, terrestrial Geadephaga and aquatic Hydradephaga. Monophyly of both groups is uncertain, and the relationship of the two groups has implications for inferring habitat transitions within Adephaga. Here we examine phylogenetic relationships of these groups using evidence provided by DNA sequences from all four suborders of beetles, including 60 species of Adephaga, 4 Archostemata, 3 Myxophaga, and 10 Polyphaga. We studied 18S ribosomal DNA and 28S ribosomal DNA, aligned with consideration of secondary structure, as well as the nuclear protein-coding gene wingless . Independent and combined Bayesian, likelihood, and parsimony analyses of all three genes supported placement of Trachypachidae in a monophyletic Geadephaga, although for analyses of 28S rDNA and some parsimony analyses only if Coleoptera is constrained to be monophyletic. Most analyses showed limited support for the monophyly of Hydradephaga. Outside of Adephaga, there is support from the ribosomal genes for a sister group relationship between Adephaga and Polyphaga. Within the small number of sampled Polyphaga, analyses of 18S rDNA, wingless , and the combined matrix supports monophyly of Polyphaga exclusive of Scirtoidea. Unconstrained analyses of the evolution of habitat suggest that Adephaga was ancestrally aquatic with one transition to terrestrial. However, in analyses constrained to disallow changes from aquatic to terrestrial habitat, the phylogenies imply two origins of aquatic habit within Adephaga.  相似文献   

14.
ABSTRACT: BACKGROUND: The patterns and drivers of species assemblages represent the core of community ecology.We focus on the assemblages of a single family of ubiquitous lotic insects, the Simuliidae(black flies), of which the larvae play a critical role in resource turnover in steams. We useMantel tests and null models to tease out the potential influence of abiotic stream conditions,species interactions, and dispersal on the assemblage patterns of larval black flies over twospatial scales (within and across ecoregions) and two seasons (spring and summer). RESULTS: When stream sites were considered across ecoregions in the spring, stream conditions anddispersal were correlated significantly with species similarity; however, within ecoregions inthe spring, dispersal was important only in the Piedmont and Sandhills and abiotic factorsonly in the Mountains. In contrast, results of the summer analyses within and acrossecoregions were congruent; assemblage similarity was significantly correlated with streamconditions both across and within ecoregions. Null models suggested that patterns of speciessegregation in the spring were consistent with a community structured by competition,whereas patterns in the summer were consistent with species assemblages influenced byabiotic factors. CONCLUSIONS: Species composition of black flies at streams sites is correlated with dispersal factors andstream conditions, but results vary over spatial and temporal scales. Communities of blackflies can be viewed within a metacommunity context; local assemblages are consistent withspecies sorting and mass effects. Given that black flies have a terrestrial stage, with femalesdeciding where to place the eggs, a full understanding of the processes that determine local aquatic assemblages will require integration of the dynamics of the aquatic immature stagesand the terrestrial adults.  相似文献   

15.
Abstract.  Recent field surveys in the Hawaiian Islands have revealed an adaptive radiation of endemic water scavenger beetles (Coleoptera: Hydrophilidae). Phylogenetic analysis based on 55 adult morphological characters affirms that this endemic hydrophilid fauna is a monophyletic clade that incorporates the first well-supported transformation from an aquatic to terrestrial way of life within any lineage of the subfamily Hydrophilinae. The clade is prescribed to the genus Limnoxenus Motschulsky, where described members were previously placed. Five new species are described: L. waialeale sp.n. (Kauai), L. kauaiensis sp.n. (Kauai), L. oahuensis sp.n. (Oahu), L. punctatostriatus sp.n. (Kauai) and L. namolokama sp.n. (Kauai). Lectotypes are designated for the two previously described species L. semicylindricus (Eschscholtz) and L. nesiticus (Sharp). The Hawaiian lineage is a component of a larger clade that also includes the remaining four species of Limnoxenus from Europe, South Africa, and Australia, plus the monotypic genera Limnocyclus Balfour-Browne of New Caledonia and Hydramara Knisch of South America. The majority of the Hawaiian species exhibit vestigial wings, an extremely unusual condition in aquatic beetles. No other island-endemic members of the Hydrophilinae are known to be flightless, suggesting insularity per se is not responsible for this condition. L. nesiticus of Oahu has not been collected during the past 106 years, suggesting that it has been lost to anthropogenically mediated extinction.  相似文献   

16.
Wolbachia (Alphaproteobacteria) is an inherited endosymbiont of arthropods and filarial nematodes and was reported to be widespread across insect taxa. While Wolbachia's effects on host biology are not understood from most of these hosts, known Wolbachia‐induced phenotypes cover a spectrum from obligate beneficial mutualism to reproductive manipulations and pathogenicity. Interestingly, data on Wolbachia within the most species‐rich order of arthropods, the Coleoptera (beetles), are scarce. Therefore, we screened 128 species from seven beetle families (Buprestidae, Hydraenidae, Dytiscidae, Hydrophilidae, Gyrinidae, Haliplidae, and Noteridae) for the presence of Wolbachia. Our data show that, contrary to previous estimations, Wolbachia frequencies in beetles (31% overall) are comparable to the ones in other insects. In addition, we used Wolbachia MLST data and host phylogeny to explore the evolutionary history of Wolbachia strains from Hydraenidae, an aquatic lineage of beetles. Our data suggest that Wolbachia from Hydraenidae might be largely host genus specific and that Wolbachia strain phylogeny is not independent to that of its hosts. As this contrasts with most terrestrial Wolbachia–arthropod systems, one potential conclusion is that aquatic lifestyle of hosts may result in Wolbachia distribution patterns distinct from those of terrestrial hosts. Our data thus provide both insights into Wolbachia distribution among beetles in general and a first glimpse of Wolbachia distribution patterns among aquatic host lineages.  相似文献   

17.
Abstract

Leiopelma hochstetteri, the most widespread of New Zealand's native frogs, is recognised as threatened, and is fully protected by legislation. As a first step to characterise the diet and trophic level of L. hochstetteri within streams in the Waitakere Ranges, Auckland, stable carbon and nitrogen isotope analyses were undertaken on a variety of sympatric terrestrial and aquatic plant and animal species, including adult frogs. These results show that: (1) aquatic and terrestrial food webs are linked by terrestrial inputs into the stream; (2) invertebrate and vertebrate predators separate well into distinct trophic groups, and (3) L. hochstetteri occupies an intermediate trophic position among predators, with a diet, at least as an adult, comprising terrestrial invertebrates. Shortfin eels and banded kokopu are identified as potential predators of L. hochstetteri, but data for rats are inconclusive. These results have important implications for the conservation of New Zealand native frog species and riparian stream habitat.  相似文献   

18.
The hypothesis that similar conidial morphologies in aquatic hyphomycetes are a result of convergent evolution was tested using molecular sequence data. Cladistic analyses were performed on partial sequences of 28S rDNA of seven species of Lemonniera, one species of Margaritispora and one species of Goniopila. Lemonniera has tetraradiate conidia with long arms, whereas Margaritispora and Goniopila have typically globose (isodiametric) conidia, with short conical protuberances in a stellate or quadrangular arrangement. Lemonniera and Margaritispora have phialidic conidiogenesis and both produce dark, minute sclerotia in culture whereas Goniopila has holoblastic conidiogenesis and does not produce sclerotia in culture. Goniopila produces a microconidial phialidic synanamorph in culture. All three genera have schizolytic conidial secession. Molecular analyses demonstrate that Lemonniera species are placed in two distinct clades: one within Leotiomycetes; the other within Pleosporales, Dothideomycetes. Margaritispora is placed with Lemonniera species within Leotiomycetes. Goniopila and Lemonniera pseudofloscula are placed within Dothideomycetes. No morphological character was entirely congruent with the molecular derived phylogeny. This suggests that for the group of species studied, conidial shape is not a reliable indicator of phylogeny but more likely the result of convergent evolution in response to the aquatic environment.  相似文献   

19.
Gaubert, P., Tranier, M., Delmas, A.-S., Colyn, M. & Veron, G. (2004). First molecular evidence for reassessing phylogenetic affinities between genets ( Genetta ) and the enigmatic genet-like taxa Osbornictis , Poiana and Prionodon (Carnivora, Viverridae). — Zoologica Scripta, 33 , 117–129.
The subfamily Viverrinae is a composite group of carnivores comprising the large and plantigrade terrestrial civets ( Civettictis , Viverricula and Viverra ) and the slender and generally more arboreal genets and genet-like taxa ( Genetta , Prionodon , Poiana , Osbornictis ), both having Asiatic and African representatives. The problematic phylogenetic relationships between genets and genet-like taxa are addressed for the first time from a molecular perspective through complete cytochrome b gene sequences. We used a large taxonomic sample set including some very rare and crucial species such as Osbornictis piscivora , Poiana richardsonii (museum specimen material) and Genetta johnstoni . The results from parsimony, distance and maximum likelihood analyses do not support the monophyly of the Viverrinae and contradict previous morphological hypotheses. The Asiatic linsangs ( Prionodon spp.) are excluded from the Viverrinae and represent either a basal Feliformia or Viverridae. The other genet-like taxa constitute a strongly supported monophyletic African group, in which the African linsang (represented by Poiana richardsonii ) is a sister group to the genets. The aquatic genet Osbornictis piscivora is included within the latter clade, and the genus Osbornictis should be considered a junior synonym of Genetta . African and Asiatic terrestrial civets are monophyletic, but their phylogenetic affinities with the genet-like clade are inconclusive using our data set. On the basis of our molecular results, morphological convergences and adaptations to peculiar habitats and ways of life within genets and genet-like taxa are discussed.  相似文献   

20.
Starting in 2004, our lab has published several studies on the relationship between bone microanatomy, lifestyle (aquatic to terrestrial), and the phylogeny of tetrapods. These studies emphasized quantitative and statistical analyses. Therefore, the raw data used in these studies were never published. This is unfortunate because no model captures all information in biological data. This paper remedies this situation by providing the detailed anatomical drawings used in our previous studies. These constitute the largest set of standardized cross-section images of appendicular long bones (tibiae, radii, and humeri) ever published, at least as far as the number of represented species (over one hundred) is concerned. All major aquatic to terrestrial extant tetrapod clades are represented (lissamphibians, mammals, turtles, squamates, and crocodilians). The comparative figures show that aquatic tetrapods differ most from the others, whereas amphibious taxa differ much less from their terrestrial relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号