首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The resistance spectrum to bacteriophage phi 3T of different Bacillus subtilis 168/W23 strains hybrid for wall teichoic acids suggested that poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate), a so-called minor teichoic acid of strain 168, forms part of the receptor for this phage, and a serologically related group of phages. A representative sample of 25 mutants specifically resistant to phi 3T, obtained from a mutagenized culture by direct selection, were all found to have a greatly reduced galactosamine content. Relevant mutations in these strains were shown by PBS1 transduction and transformation to belong to two linkage groups; a minority, associated with an atypical colony morphology, were localized between sacA and purA, whereas the majority mapped between gtaB and tagB1 (formerly tag-1), a region containing all known genes involved in the synthesis of the major wall teichoic acid, poly(glycerol phosphate). The former mutations mapped in a new locus, gneA, characterized by a deficiency in UDP-N-acetylglucosamine 4-epimerase, while the latter ones, as well as the previously identified pha-3 (Estrela et al., 1986, Journal of General Microbiology 132, 411-415), map is a locus named gga. They are likely to affect membrane-bound enzymes involved in the synthesis of the galactosamine-containing teichoic acid. A possible biological role of this polymer is discussed.  相似文献   

2.
Bacillus subtilis C6 phi R4 is an SPO1-resistant derivative of strain C6D, a left-hand macrofiber-producing strain described previously (N. H. Mendelson, Proc. Natl. Acad. Sci. U.S.A. 75:2478-2482, 1978). In addition to the phage resistance property, strain C6 phi R4 differs from its parent in macrofiber organization and formation of aggregates in liquid shake cultures. The phage resistance mutation was located in the gtaC gene. The macrofiber organization and aggregation phenotypes also appear to be controlled by the gtaC locus. Strains constructed by introduction of the gtaC mutation into C6D appear to be identical to the original C6 phi R4 strain in all phenotypic properties. In contrast, other constructs carrying either gtaA or gtaB that are resistant to SPO1 do not display the characteristic C6 phi R4 morphological phenotypes.  相似文献   

3.
The spoIVC locus of Bacillus subtilis was analysed. Fourteen spoIVC mutants isolated following nitrosoguanidine mutagenesis were used along with two previously characterized spoIVC mutants to construct a fine structure genetic map of the locus. The recombination index (RI) measured between extreme mutations was 0.26; no recombination could be detected between four of the mutations. Complementation analysis showed that all the mutations fall into two cistrons. The RI between extreme mutations in cistron A was about 0.17 and that between extreme mutations in cistron B was about 0.05. In respect of biochemical markers, the spoIVC mutations all produced similar phenotypes, irrespective of their location. However, in both cistrons oligosporogenous and asporogenous mutations mapped close together.  相似文献   

4.
Bacillus subtilis 168ts-200B is a temperature-sensitive mutant of B. subtilis 168 which grows as rods at 30 C but as irregular spheres at 45 C. Growth at the nonpermissive temperature resulted in a deficiency of teichoic acid in the cell wall. A decrease in teichoic acid synthesis coupled with the rapid turnover of this polymer led to a progressive loss until less than 20% of the level found in wild-type rods remained in spheres. Extracts of cells grown at 45 C contained amounts of the enzymes involved in the biosynthesis and glucosylation of teichoic acids that were equal to or greater than those found in normal rods. Cell walls of the spheres were deficient also in the endogenous autolytic enzyme (N-acyl muramyl-l-alanine amidase). Genetic analysis of the mutant by PBS1-mediated transduction and deoxyribonucleic acid-mediated transformation demonstrated that the lesion responsible for these effects (tag-1) is tightly linked to the genes which regulate the glucosylation of teichoic acid in the mid-portion of the chromosome of B. subtilis.  相似文献   

5.
Many of the viruses which infect Bacillus subtilis require glucosylated polyglycerol teichoic acid for adsorption. These mutants can be divided into three classes on the basis of enzymatic defects and growth on galactose-minimal medium. Transduction with phage PBS1 reveals that two of these, gtaA and gtaB, are linked to hisA1, whereas the gtaC locus is linked to argC. Analysis by deoxyribonucleic acid-mediated transformation indicates that these loci exist in a cluster between the hisA1 and argC4 loci. Anomalies in mapping in the group II region of the chromosome exist. The basis of these anomalies is discussed.  相似文献   

6.
A mutant of Bacillus subtilis 168 was isolated which resists infection by all the group III temperate bacteriophages except SPR, while allowing full infection by phages of the other groups (I, II and IV). The mutation conferring this phenotype, pha-3, shows 52-54% PBS1-mediated cotransduction with the hisAl marker, mapping therefore in the gtaA and gtaB region of the B. subtilis chromosome. Nevertheless, it does not affect the infection by phages sensitive to gta mutations.  相似文献   

7.
Mapping of a Temperate Bacteriophage Active on Bacillus subtilis   总被引:40,自引:19,他引:21       下载免费PDF全文
Bacteriophage phi105 is a temperate bacteriophage for Bacillus subtilis 168. Temperature-sensitive and plaque mutants of phi105 were isolated. The results of two- and three-factor crosses with these mutants suggest the vegetative map of phi105 to be circular. The location of prophage phi105 between bacterial markers phe-1 and ilvA1 was shown by means of PBS1 transduction. Five markers in the prophage were linearly ordered with respect to the bacterial markers. Linkage between bacterial and prophage markers was demonstrated in transformation experiments with deoxyribonucleic acid extracted from lysogenic bacteria. The data demonstrate that prophage phi105 is linearly inserted into the bacterial chromosome.  相似文献   

8.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essential in B. subtilis; however, it is widely believed that teichoic acids are dispensable under phosphate-limiting conditions. In the work reported here, we carefully studied the dispensability of teichoic acid under phosphate-limiting conditions by constructing three new mutants. These strains, having precise deletions in tagB, tagF, and tarD, were dependent on xylose-inducible complementation from a distal locus (amyE) for growth. The tarD deletion interrupted poly(ribitol phosphate) synthesis in B. subtilis and represents a unique deletion of a tar gene. When teichoic acid biosynthetic proteins were depleted, the mutants showed a coccoid morphology and cell wall thickening. The new wall teichoic acid biogenesis mutants generated in this work and a previously reported tagD mutant were not viable under phosphate-limiting conditions in the absence of complementation. Cell wall analysis of B. subtilis grown under phosphate-limited conditions showed that teichoic acid contributed approximately one-third of the wall anionic content. These data suggest that wall teichoic acid has an essential function in B. subtilis that cannot be replaced by teichuronic acid.  相似文献   

9.
Bacillus subtilis bacteriophage phi 1m, a host-range variant, was isolated after mutagenesis of virulent bacteriophage phi 1. Unlike its wild-type antecedent, phi 1m could not form plaques on lawns of B subtilis 168 at 37 C, although it adsorbed to, penetrated, and killed this bacterium. Experiments conducted in liquid medium at 37 C showed that B. subtilis 168 cells allowed reduced levels of phi 1m development at low multiplicities of infection, whereas high multiplicity infections of this strain by the phage were abortive. Certain mutants, derived originally from B. subtilis 168, were observed to be permissive for phi 1m at 37 C; moreover, their permissive phenotype could be duplicated by growing wild-type B. subtilis 168 cells at temperatures above 47 C. Studies on phi 1m and host nucleic acid synthesis under nonpermissive conditions demonstrated that transciption and DNA synthesis proceeded up to 20 min after infection, after which time there was a cessation of all nucleic acid production. These observations are discussed with respect to other abortive bacteriophage infections in B. subtilis.  相似文献   

10.
Citric acid cycle: gene-enzyme relationships in Bacillus subtilis   总被引:28,自引:18,他引:10       下载免费PDF全文
The genetic location of mutations affecting the citric acid cycle and the properties of mutants of Bacillus subtilis possessing these mutations have been examined. Genes coding for the component enzymes of the cycle were found to be unlinked to each other and thus do not form an operon. The mutational defect in a mutant lacking fumarase mapped between thr-5 and cysB3. Mutations causing inability to produce isocitrate dehydrogenase and succinate dehydrogenase were found to map between argA11 and leu-1. The alpha-ketoglutarate dehydrogenase mutations were mapped at the terminal end of the B. subtilis chromosome through a weak linkage in phage PBS-1 transduction of one class of these mutations of ilvA2 and metB4. A second class of alpha-ketoglutarate dehydrogenase mutations mapped closer to ilvA2 and metB4 but still terminal with respect to these markers. Aconitaseless mutants possessed mutations that could not be linked to any of the known transducing segments of the chromosome. An effect of mutation conferring loss of one enzyme of the cycle on the specific activity of the other enzymes in the cycle was observed.  相似文献   

11.
Virulent bacteriophage phi 1 grows on a variety of Bacillus subtilis strains, mutants of this virus which abortively infect the transformable bacillus. B. subtilis 168, while retaining the ability to productively infect related bacteria have been found. In the present study, we demonstrate that the inability of one such variant, phi 1m, to develop normally in strain 168 is mediated by cryptic prophage SP beta. The latter is a temperate bacteriophage which is carried by B. subtilis 168 and most strains derived from this bacterium. Phi 1 m infection of SP beta lysogens begins with apparently normal adsorption, penetration, and inititaion of virus-directed syntheses. At about the 20th min of the latent period, however, there is an abrupt cessation of nucleic acid synthesis and cellular respiration, accompanied by a change in cell permeability. This course of events can be altered to a permissive infection by mutation in the mpi gene of SP beta, by mutation in the spoOA gene of the host, or by growing SP beta lysogens at high temperature. In addition, we found a second class of phi 1 mutants which abortively infect B. subtilis 168 derivatives even in the absence of the SP beta prophage.  相似文献   

12.
We have developed a xylose-dependent expression system for tight and modulated expression of cloned genes in Bacillus subtilis. The expression system is contained on plasmid pSWEET for integration at the amyE locus of B. subtilis and incorporates components of the well-characterized, divergently transcribed xylose utilization operon. The system contains the xylose repressor encoded by xylR, the promoter and 5' portion of xylA containing an optimized catabolite-responsive element, and intergenic xyl operator sequences. We have rigorously compared this expression system to the isopropyl-beta-D-thiogalactopyranoside-induced spac system using a thermostable beta-galactosidase reporter (BgaB) and found the xyl promoter-operator to have a greater capacity for modulated expression, a higher induction/repression ratio (279-fold for the xyl system versus 24-fold with the spac promoter), and lower levels of expression in the absence of an inducer. We have used this system to probe an essential function in wall teichoic acid biosynthesis in B. subtilis. Expression of the teichoic acid biosynthesis gene tagD, encoding glycerol-3-phosphate cytidylyltransferase, from the xylose-based expression system integrated at amyE exhibited xylose-dependent complementation of the temperature-sensitive mutant tag-12 when grown at the nonpermissive temperature. Plasmid pSWEET thus provides a robust new expression system for conditional complementation in B. subtilis.  相似文献   

13.
A search was made for the genes responsible for the production of helical macrofibers in the original collection of macrofiber-producing strains of B. subtilis. Two loci were identified: fibA, located between hisA and tag-1, and fibB, linked to cysB. fibA governs a short-lived division suppression phenomenon associated with the production of rudimentary fibers, whereas fibB appears to be responsible for a persistent division suppression and a more highly organized helical macrofiber. Both mutations are recovered from each of the original macrofiber-producing strains which also carried the div IV-B1 mutation responsible for minicell production. The latter mutation by itself is not sufficient, however, for the production of macrofibers. Other known mutations leading to division suppression that map in the same region are shown not to be allelic to fibA or fibB. Neither fib locus appears to be responsible for helix hand determination.  相似文献   

14.
The Bacillus subtilis phage phi 105 repressor specifically recognizes a 14-bp operator sequence which does not exhibit 2-fold rotational symmetry. To facilitate a genetic analysis of this sequence-dependent DNA binding a B. subtilis strain was constructed in which mutations affecting the phi 105 repressor-operator interaction cause a selectable phenotype, chloramphenicol resistance. After in vivo mutagenesis, we isolated and mapped 22 different mutations in the repressor coding sequence, 15 of which are missense substitutions. These are exclusively located in the N-terminal part (positions 1-43) of the 144 residue long polypeptide. Two nonsense mutants, at positions 70 and 89, respectively, still show partial repressor activity. These data suggest that the phi 105 repressor consists of at least two independently folding structural domains, of which the N-terminal is involved in operator binding. Twelve missense mutations are clustered in a region extending from Gln-18 to Arg-37, which we propose to be the DNA-binding alpha-helix--beta-turn--alpha-helix motif, common to all lambda Cro-like repressors. The second ('recognition') helix shows significant homology with the corresponding sequence in Tn3 resolvase, and there is also a striking similarity between the phi 105 operator and the consensus sequence for a Tn3 res half-site. Based on these observations, and on the previously isolated phi 105 0c mutants, we tentatively assign some specific contacts between base pairs from the first half of a phi 105 operator site and amino acids from the repressor's 'recognition helix'.  相似文献   

15.
A series of improved phage vectors have been constructed, based on Bacillus subtilis bacteriophage phi 105, which can be used to clone genes in B. subtilis by direct transfection of protoplasts. The new vectors, designated phi 105J23, phi 105J24, phi 105J27 and phi 105J28, show frequencies of plaque formation that are equal to those of wild-type phi 105. This represents at least a 10-fold improvement over phi 105J9, the vector used in previous cloning experiments. Two of the new vectors phi 105J27 and phi 105J28 incorporate a mutation, cts-52, that renders the prophage temperature inducible. This has made it possible to devise a rapid small-scale procedure for screening progeny phage for the presence of inserted DNA. The usefulness of the new vectors is illustrated in the accompanying paper by cloning more than 20 B. subtilis sporulation genes.  相似文献   

16.
A previously constructed Escherichia coli transformant carrying a functional copy of bacteriophage phi X174 gene G on a plasmid, p phi XG, was used to isolate gene G mutants carrying temperature sensitive and lethal missense mutations. Two of the mutations have been characterized by sequencing: one carries a G --> A transition at residue 2821 producing a Gly --> Ser change in codon 143 of the G spike protein; the other carries an A --> G transition at residue 2678 producing Glu --> Gly change in codon 95. Sequencing DNA from 2 other mutants carrying lethal mutations that are rescued with p phi XG did not reveal any changes in the coding sequence. The lesion is believed to be in the intercistronic region between genes F and G. The adsorption kinetics for these mutants appear to be normal. Their burst size is about 25% that of wild type phi X174 on the host carrying p phi XG. These results along with previous results from the senior author's laboratory demonstrate that p phi XG can be used to rescue any gene G mutant of phi X174 regardless of the nature of the mutation involved.  相似文献   

17.
Bacillus subtilis succinate dehydrogenase (SDH) is composed of two unequal subunits designated Fp (Mr, 65,000) and Ip (Mr. 28,000). The enzyme is structurally and functionally complexed to cytochrome b 558 (Mr, 19,000) in the membrane. A total of 21 B. subtilis SDH-negative mutants were isolated. The mutants fall into five phenotypic classes with respect to the presence and localization of the subunits of the SDH-cytochrome b558 complex. One class contains mutants with an inactive membrane-bound complex. Membrane-bound enzymatically active SDH could be reconstituted in fused protoplasts of selected pairs of SDH-negative mutants. Most likely reconstitution is due to the assembly of preformed subunits in the fused cells. On the basis of the reconstitution data, the mutants tested could be divided into three complementation groups. The combined data of the present and previous work indicate that the complementation groups correspond to the structural genes for the three subunits of the membrane-bound SDH-cytochrome b558 complex. A total of 31 SDH-negative mutants of B. subtilis have now been characterized. The respective mutations all map in the citF locus at 255 degrees on the B. subtilis chromosomal map. In the present paper, we have revised the nomenclature for the genetics of SDH in B. subtilis. All mutations which give an SDH-negative phenotype will be called sdh followed by an isolation number. The designation citF will be omitted, and the citF locus will be divided into three genes: sdhA, sdhB, and sdhC. Mutations in sdhA affect cytochrome b558, mutations in sdhB affect Fp, and mutations in sdhC affect Ip.  相似文献   

18.
Two Escherichia coli K12 mutants defective in 3-methyladenine-DNA glycosylase have been isolated following mutagenesis by N-methyl-N-nitro-N-nitrosoguanidine. The mutants, which are of independent origin and have been designated tag-1 and tag-2, contain greatly reduced amounts of 3-methyladenine-DNA glycosylase activity in cell-free extracts. The defect in the tag-1 strain is observed at 43 °C but not at 30 °C, and a partially purified enzyme from this strain is unusually heat-labile, indicating that the defect in the tag-1 strain is due to a mutation in the structural gene for 3-methyladenine-DNA glycosylase.We have shown that 3-methyladenine-DNA glycosylase is responsible for the rapid removal of 3-methyladenine from the DNA of E. coli cells treated with monofunctional alkylating agents. The active release of this base is greatly impaired in the mutant strains. Both tag mutant strains are abnormally sensitive to killing by monofunctional alkylating agents and are defective in the host cell reactivation of methyl methanesulphonate-treated bacteriophage A. The tag mutation does not confer an increased sensitivity to ultraviolet or X-irradiation, and host cell reactivation of irradiated λ is normal in these strains. Further, there was no increase in the rate of spontaneous mutation in a tag strain.Three-factor transductional crosses with nalA and nrdA have shown that the tag-2 mutation is located at 47.2 minutes on the map of the E. coli K12 chromosome. In the mapping experiments, the tag-1 mutation behaved differently and appeared to be located at 43 to 46 minutes, in a closely situated but non-adjacent gene. Possible implications of the non-identity of the tag-1 and tag-2 mutations are discussed.  相似文献   

19.
Mutations determining mitomycin resistance in Bacillus subtilis   总被引:3,自引:0,他引:3  
Iyer, V. N. (Microbiology Research Institute, Canada Department of Agriculture, Ottawa, Canada). Mutations determining mitomycin resistance in Bacillus subtilis. J. Bacteriol. 92:1663-1669. 1966.-The pattern of development of genetic resistance in Bacillus subtilis to mitomycin C was studied, and spontaneous single and multistep mutants were obtained. The transmission and expression of these mutations in sensitive strains proved possible by means of genetic transformation. The mutations were genetically studied in relation to a chromosomal mutation, mac-1, which confers resistance to the macrolide antibiotic erythromycin and which has been previously localized in the early-replicating segment of the B. subtilis chromosome. The results indicate that all of three primary mutations studied in this manner, as well as a secondary and tertiary mutation derived from one of the primary mutations, are clustered in this early-replicating segment. It appears that the secondary and tertiary mutations enhance the resistance conferred by the primary mutation, apparently without themselves conferring any resistance.  相似文献   

20.
Phenotypes of Bacillus subtilis priA mutants suggest that they are deficient in the restart of stalled chromosomal replication forks. The presumed activity of PriA in the restart process is to promote the assembly of a multiprotein complex, the primosome, which functions to recruit the replication fork helicase onto the DNA. We have proposed previously that three proteins involved in the initiation of replication at oriC in B. subtilis, DnaB, DnaD and DnaI, are components of the PriA primosome in this bacterium. However, the involvement of these proteins in replication restart has not yet been studied. Here, we describe dnaB mutations that suppress the phenotypes of B. subtilis priA mutants. In a representative mutant, the DnaC helicase is loaded onto single-stranded DNA in a PriA-independent, DnaD- and DnaI-dependent manner. These observations confirm that DnaB, DnaD and DnaI are primosomal proteins in B. subtilis. Moreover, their involvement in the suppression of priA phenotypes shows that they participate in replication fork restart in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号