首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A covalent, catalytic intermediate of cytosolic liver acetyl coenzyme A: arylamine N-acetyltransferase (EC 2.3.1.5) from rapid acetylator rabbits (III/J) was isolated and chemically characterized. The active site was further studied using two covalent inhibitors, [2-3H]iodoacetic acid and bromoacetanilide. Inhibition experiments with [2-3H]iodoacetic acid at pH 6.9 showed that the incorporation of 0.7 mol of [2-3H]iodoacetic acid/mol of N-acetyltransferase led to rapid, irreversible loss of enzyme activity. Preincubation of the enzyme with acetyl coenzyme A (acetyl-CoA) completely protected against inactivation by [2-3H]iodoacetic acid. After incubating the N-acetyltransferase with [2-3H]acetyl-CoA in the absence of an acceptor amine, an acetyl-cysteinyl-enzyme intermediate was isolated and characterized. Preincubation of N-acetyltransferase with iodoacetic acid prevented the incorporation of the [2-3H]acetyl group into the enzyme. The product analog, bromoacetanilide, caused a rapid irreversible loss of N-acetyltransferase activity. The reaction was pseudo first-order and saturated at high bromoacetanilide concentrations (KI = 0.67 mM; k3 = 1 min-1). Preincubation of the enzyme with acetyl-CoA prevented inactivation by the inhibitor. The acceptor amine 4-ethylaniline did not prevent inhibition. Incorporation of the inhibitor was directly proportional to the loss of activity showing a 1:1 stoichiometry of enzyme to inhibitor. The target amino acid was identified as cysteine by amino acid analysis of inhibitor-treated enzyme.  相似文献   

2.
Studies are reported on the inhibition of phospholipase A2 (PLA2) from porcine pancreas, cobra (Naja naja) venom, and the P388D1 macrophage-like cell line by human recombinant lipocortin I and bovine lung calpactin I. Membrane vesicles prepared from 1-stearoyl,2-arachidonoyl phosphatidylcholine (PC) and other PCs were utilized as substrate. Binding studies using sucrose flotation gradients showed that both lipocortin I and calpactin I bind to these vesicles although less tightly than to vesicles prepared from anionic phospholipids or fatty acids. Binding to PC was somewhat enhanced by Ca2+. Inhibition of cobra venom PLA2 was not observed when PC vesicles were used as substrate but was when dipalmitoyl phosphatidylethanolamine was used. Both the pancreatic and macrophage enzymes were inhibited when acting on PC. Interestingly, the inhibition of the macrophage enzyme toward PC depended on the fatty acid attached to the sn-2 position of PC with arachidonate greater than oleate greater than palmitate. Inhibition was also highest at low [PC]; these inhibition results can be explained by the "substrate depletion model" (Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. (1987) J. Biol. Chem. 262, 1698-1705). Experimental and theoretical considerations suggest that the in vitro inhibition by lipocortins of this macrophage PLA2 from a cell that makes lipocortin and is active in prostaglandin production is due to effects on substrate availability rather than direct inhibition.  相似文献   

3.
The inactivation of the bovine heart mitochondrial F1-ATPase with 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) in the presence of [3H]aniline at pH 7.0 led to the covalent incorporation of 3H into the enzyme. When the ATPase was inactivated by 94% with 0.9 mM EEDQ in the presence of 3.6 mM [3H]aniline in a large-scale experiment in which the protein concentration was 21 mg/ml, 4.2 mol [3H]anilide were formed per mol enzyme, of which 0.35 mol was incorporated per mol of the alpha subunit and 1.0 mol was incorporated per mol of the beta subunit. Examination of a tryptic digest of the isolated alpha subunit revealed that the majority of the 3H was contained in a single tryptic peptide, which, when purified, was shown to contain the [3H]anilide of a glutamic acid residue which corresponds to alpha-Glu-402 of the Escherichia coli F1-ATPase. This residue was labeled to the extent of about 1.0 mol/mol enzyme. Analysis of tryptic peptides purified from the isolated beta subunit showed that 0.8 and 1.5 mol, respectively, of the [3H]anilides of beta-Glu-341 and beta-Glu-199 were formed per mol MF1 during the inactivation of the enzyme at 21 mg/ml. When the ATPase was inactivated by 90% at a protein concentration of 1.7 mg/ml by 0.9 mM EEDQ in the presence of 1.7 mM [3H]aniline, 3.1 mol [3H]anilide were formed per mol enzyme. From the analysis of the radioactive peptides purified from a tryptic digest of the labeled ATPase from this experiment it was estimated that 0.7 mol of the [3H]anilide of alpha-Glu-402, 0.3 mol of the [3H]anilide of beta-Glu-341, and 1.5 mol of the [3H]anilide of beta-Glu-199 were formed per mol F1-ATPase. Since beta-Glu-199 is labeled to the same extent in the two experiments while alpha-Glu-402 and beta-Glu-341 were not, suggests that the modification of beta-Glu-199 is responsible for inactivation of the enzyme by EEDQ.  相似文献   

4.
B S Gibbs  S J Benkovic 《Biochemistry》1991,30(27):6795-6802
A pterin analogue, 5-[(3-azido-6-nitrobenzylidene)amino]-2,6-diamino-4-pyrimidinone (ANBADP), was synthesized as a probe of the pterin binding site of phenylalanine hydroxylase. The photoaffinity label has been found to be a competitive inhibitor of the enzyme with respect to 6,7-dimethyltetrahydropterin, having a Ki of 8.8 +/- 1.1 microM. The irreversible labeling of phenylalanine hydroxylase by the photoaffinity label upon irradiation is both concentration and time dependent. Phenylalanine hydroxylase is covalently labeled with a stoichiometry of 0.87 +/- 0.08 mol of label/enzyme subunit. 5-Deaza-6-methyltetrahydropterin protects against inactivation and both 5-deaza-6-methyltetrahydropterin and 6-methyltetrahydropterin protect against covalent labeling, indicating that labeling occurs at the pterin binding site. Three tryptic peptides were isolated from [3H]ANBADP-photolabeled enzyme and sequenced. All peptides indicated the sequence Thr-Leu-Lys-Ala-Leu-Tyr-Lys (residues 192-198). The residues labeled with [3H]ANBADP were Lys198 and Lys194, with the majority of the radioactivity being associated with Lys198. The reactive sulfhydryl of phenylalanine hydroxylase associated with activation of the enzyme was also identified by labeling with the chromophoric label 5-(iodoacetamido)fluorescein [Parniak, M. A., & Kaufman, S. (1981) J. Biol. Chem. 256, 6876]. Labeling of the enzyme resulted in 1 mol of fluorescein bound per phenylalanine hydroxylase subunit and a concomitant activation of phenylalanine hydroxylase to 82% of the activity found with phenylalanine-activated enzyme. Tryptic and chymotryptic peptides were isolated from fluorescein-labeled enzyme and sequenced. The modified residue was identified as Cys236.  相似文献   

5.
G Harris  M Ator  J Stubbe 《Biochemistry》1984,23(22):5214-5225
Incubation of 2'-chloro-2'-deoxy[3'-3H]uridine 5'-diphosphate ([3'-3H]ClUDP) with Escherichia coli ribonucleotide reductase (RDPR) and use of thioredoxin-thioredoxin reductase as reductants result in release of 4.7 equiv of 3H2O/equiv of B1 protomer, concomitant with enzyme inactivation. Inactivation is accompanied by the production of 6 equiv of inorganic pyrophosphate [Stubbe, J. A., & Kozarich, J.W. (1980) J. Am. Chem. Soc. 102, 2505-2507] and by the release of uracil as previously shown [Thelander, L., Larsson, A., Hobbs, J., & Eckstein, F. (1976) J. Biol. Chem. 251, 1398-1405]. Reisolation of RDPR by Sephadex chromatography and analysis by scintillation counting indicate that 0.96 equiv of 3H is bound per protomer of the B1 subunit of the inactivated enzyme. Incubation of [5'-3H]ClUDP with RDPR followed by similar analysis indicates that 4.6 mol of 3H is bound per protomer of the B1 subunit of the inactivated enzyme. No 3H2O is released, and 6 equiv of inorganic pyrophosphate is produced during the inactivation. RDPR is protected against inactivation when dithiothreitol (DTT) is used as a reductant in place of thioredoxin-thioredoxin reductase. Incubation of [5'-3H]ClUDP with RDPR and DTT results in the isolation of CHCl3-extractable material that exhibits infrared absorptions at 1710 and 1762 cm-1. The infrared spectrum and the NMR spectrum of the CHCl3-extracted material are very similar to model compounds prepared by the interaction of 2-methylene-3(2H)-furanone with ethanethiol. Incubation of ribonucleoside-triphosphate reductase (RTPR) from Lactobacillus leichmannii with [3'-3H]ClUTP and 3 mM DTT also results in time-dependent 3H2O release concomitant with enzyme inactivation. Reisolation of the inactive protein by Sephadex chromatography followed by radiochemical analysis indicates that 0.4 equiv of 3H is bound covalently per mol of inactivated enzyme. Similar studies with [5'-3H]ClUTP indicate that 2.9 equiv of 3H is bound covalently per mol of inactivated enzyme. No 3H2O is released. High concentrations of DTT protect the enzyme against inactivation. Extraction of the enzymatic reaction mixture with CHCl3 and analysis of the isolated products result in an infrared spectrum and an NMR spectrum remarkably similar to those observed with the E. coli RDPR. Data presented are consistent with the proposal that both the E. coli and L. leichmannii enzymes are able to catalyze the breakdown of the appropriate 2'-chloro-2'-deoxynucleotide to a 3'-keto-2'-deoxynucleotide that can collapse to form the reactive sugar intermediate 2-methylene-3(2H)-furanone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Pig heart NADP-dependent isocitrate dehydrogenase is 65% inactivated by 3-bromo-2-ketoglutarate (Ehrlich, R.S., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,614-12,619) and 90% inactivated by 2-(4-bromo-2,3-dioxobutylthio)-1,N6- ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) (Bailey, J.M., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,620-12,626). Both inactivation reactions result in enzyme with an incorporation of 1.0 mol reagent/mol enzyme dimer and both modified enzymes bind only 1.0 mol manganous isocitrate or NADPH/mol enzyme dimer as compared to 2.0 mol manganous isocitrate or NADPH/mol enzyme dimer for unmodified enzyme. The inactivation reactions, which occur at or near the nucleotide binding site, are mutually exclusive. Reaction with either affinity reagent led to the isolation of the same modified triskaidekapeptide, DLAGXIHGLSNVK. We have isolated from isocitrate dehydrogenase a peptide, DLAGCIHGLSNVK, that had been modified by N-ethylmaleimide (NEM) with no loss of enzymatic activity. We now show that enzyme modified by NEM in the presence of isocitrate plus Mn2+ retains full catalytic activity but is not inactivated by either of the affinity reagents; thus, all three reagents appear to react at the same site. The analysis of HPLC tryptic maps of isocitrate dehydrogenase treated under denaturing conditions with iodo[3H]acetic acid or [3H]NEM demonstrates that both bromoketoglutarate and 2-BDB-T epsilon A-2',5'-DP react with the cysteine residue of DLAGCIHGLSNVK. We conclude that the cysteine of this triskaidekapeptide is close to the coenzyme binding site but is not essential for catalytic function.  相似文献   

7.
Adenosine triphosphopyridoxal (AP3PL) was used as an affinity label directed toward the ATP binding site of the Ca2+-transporting ATPase of the rabbit skeletal muscle sarcoplasmic reticulum (SR). The reagent inhibited the ATPase activity competitively with ATP, Ki = 20 microM. Incubation of SR membranes with 100 microM AP3PL followed by treatment with NaBH4 resulted in 90% inactivation of the E-P forming activity as well as of the Ca2+-transporting activity. Adenosine di- and tetraphosphopyridoxals had similar but less pronounced effects on the Ca2+-transport system. AP3PL was bound to ATPase in a one-to-one stoichiometry in parallel with the loss of the enzymatic activities. ATP and ADP prevented the binding of AP3PL and thereby protected the enzyme from inactivation. The SR membranes were labeled with [3H]AP3PL and then digested with thermolysin in order to identify the attachment site of the affinity label. A 3H-labeled peptide (Val-Glu-Pro-Ser-His-Lys* 684-Ser-Lys) was purified to homogeneity by Sephadex LH-20 chromatography and C18-reversed phase HPLC (Lys* denotes the binding site of [3H]AP3PL). These results indicate that the SR-ATPase peptide is folded in such a manner that Lys684 and Asp351, the phosphorylation site, are located very close to each other, since the distance between the 4-formyl group reacting with Lys684 and the gamma-phosphoryl group of the ATP moiety of AP3PL is rather small.  相似文献   

8.
Plasma amine oxidases catalyze the oxidative deamination of amines to aldehydes, followed by a 2e- reduction of O2 to H2O2. Pyrroloquinoline quinone (PQQ), previously believed to be restricted to prokaryotes, has recently been proposed to be the cofactor undergoing reduction in the first half-reaction of bovine plasma amine oxidase (Ameyama, M., Hayashi, U., Matsushita, K., Shinagawa, E., and Adachi, O. (1984) Agric. Biol. Chem. 48, 561-565; Lobenstein-Verbeek, C. L., Jongejan, J. A., Frank, J., and Duine, J. A. (1984) FEBS Lett. 170, 305-309). This result is unexpected, since model studies with PQQ implicate Schiff's base formation between a reactive carbonyl and substrates, whereas experiments with bovine plasma amine oxidase have failed to provide evidence for a carbonyl cofactor. We have, therefore, re-examined putative adducts between substrate and enzyme-bound cofactor, employing a combination of [14C]benzylamine and [3H]NaCNBH3. The use of the relatively weak reductant, NaCNBH3, affords Schiff's base specificity and permits the study of enzyme below pH 7.0. As we show, enzyme can only be inactivated by NaCNBH3 in the presence of substrate, leading to the incorporation of 1 mol of [14C]benzylamine/mol of enzyme subunit at complete inactivation. By contrast, we are unable to detect any labeling with [3H]NaCNBH3, analogous to an earlier study with [3H]NaCNBH4 (Suva, R. H., and Abeles, R. H. (1978) Biochemistry 17, 3538-3545). We conclude, first, that our inability to obtain adducts containing both carbon 14 and tritium rules out the reductive trapping either of amine substrate with pyridoxal phosphate or of aldehyde product with a lysyl side chain and, second, that the observed pattern of labeling is fully consistent with the presence of PQQ at the active site of bovine plasma amine oxidase.  相似文献   

9.
R M Katusz  R F Colman 《Biochemistry》1991,30(47):11230-11238
S-(4-Bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, has been synthesized and characterized by UV spectroscopy and thin-layer chromatography, as well as by bromide and primary amine analysis. Incubation of S-BDB-G (200 microM) with the 4-4 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. The kobs exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 1000 microM, with a kmax of 0.078 min-1 and K1 = 66 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, completely protects against inactivation by S-BDB-G. About 1.3 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated concomitant with 100% inactivation, whereas only 0.48 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when activity is fully retained. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH4, carboxymethylated, and digested with trypsin. The tryptic digest was fractionated by reverse-phase high-performance liquid chromatography. Two radioactive peptides were identified: Lys82-His-Asn-Leu-X-Gly-Glu-Thr-Glu-Glu-Glu-Arg93, in which X is modified Cys86, and Leu109-Gln-Leu-Ala-Met-CmCys-Y-Ser-Pro-Asp-Phe-Glu-Arg121 , in which Y is modified Tyr115. Only the Lys82-Arg93 peptide was modified in the presence of S-hexylglutathione when the enzyme retained full activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The reversible inactivation of porcine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate yields an irreversible modification upon sodium borohydride reduction. A 200-fold molar excess of pyridoxal-5'-P over enzyme results in inactivation to the extent of 54%, and incorporation of 5.7 mol of inactivator per mol of enzyme. The same inactivation carried out in the presence of 80 mM coenzyme, NADH, produces malate dehydrogenase which is approximately 94% active and contains 4.6 mol of pyridoxal-5'-P per mol of enzyme. The incorporation difference between inactivated and protected samples suggests, for total inactivation, the modification of 2 residues per mol of enzyme (i.e. 1 residue per subunit, or 1 per enzymatic active site). This specificity was confirmed by the isolation of a single pyridoxyl-5'-P-labeled "difference peptide" obtained by comparison of the Dowex 1-X2 elution profiles of tryptic digests of protected and inactivated samples, respectively. Amino acid analysis of the peptide demonstrated the presence of N6-pyridoxyl-L-lysine (Lys(Pyx)), establishing the existence of an essential lysing residue in the active center of malate dehydrogenase. The amino acid sequence of the active center hexapeptide has been determined to be: H2NLys(Pyx)Pro-Gly-Met-Thr-Arg-COOH.  相似文献   

11.
In order to identify the essential reactive amino acid residues of 5-enolpyruvylshikimate-3-phosphate synthase, the reaction of the enzyme with its substrate analogue bromopyruvate was investigated. Incubation of the enzyme with bromopyruvate resulted in a time-dependent loss of enzyme activity. The inactivation followed pseudo-first-order and saturation kinetics with a Kinact of 28 microM and a maximum rate constant of 0.31 min-1. The inactivation was prevented by preincubation of the enzyme with the substrates shikimate 3-phosphate, 5-enolpyruvylshikimate 3-phosphate or by the combination of shikimate 3-phosphate plus glyphosate (N-phosphonomethylglycine), an inhibitor of the enzyme. Addition of sodium [3H]borohydride to the reaction mixture had no effect on the rate of inactivation but resulted in the incorporation of 3H label to the modified enzyme. Upon 90% inactivation, approximately 1 mol of bromo[14C]pyruvate was incorporated per mole of enzyme modified in the absence or presence of sodium borohydride. When the enzyme was incubated with bromopyruvate in the presence of sodium [3H]borohydride, approximately 1 mol of 3H label was found to be associated per mole of the modified enzyme. Tryptic digestion of these labeled proteins followed by reverse phase chromatographic separation resulted in the isolation of three radioactive peptides. Analyses of these three peptides indicated that bromopyruvate inactivated the enzyme by modifying Cys-408 and Lys-411, which are conserved in all enzyme sequences studied to date.  相似文献   

12.
J P Klinman 《Biochemistry》1975,14(12):2568-2574
Yeast alcohol dehydrogenase is inactivated and alkylated by styrene oxide in a single exponential kinetic process. The concentration dependence of half-times for inactivation indicates the formation of an enzyme inhibitor complex, KI = 2.5 times 10(-2) M at pH 8.0. Reduced nicotinamide adenine dinucleotide (NADH), at a concentration of 3 times 10(-4) M where Kd congruent to 1 times 10(-5) M, has a small effect on kinetic parameters for inactivation. Although benzyl alcohol and acetamide-NADH increase the KI for styrene oxide in a manner consistent with their dissociation constants, substrate also increases the rate of inactivation at high styrene oxide concentrations. The reciprocal of half-times for inactivation, extrapolated to infinite styrene oxide concentration, increases with pH between 7.6 and 9.0, pK congruent to 8.5. The stoichiometry of alkylation by [3H]styrene oxide is 2.2 mol of reagent incorporated/mol of subunit, and is accompanied by the loss of 1.9 mol of sulfhydryl/mol of subunit; prior alkylation with iodoacetamide reduces the stoichiometry to 0.88:1, and increases the rate of labeling. Tryptic digests of enzyme modified with [14C]iodoacetamide or [3H]styrene oxide produce two major peptides which cochromatograph, indicating that styrene oxide and iodoacetamide modify the same cysteine residues. Previous investigators have reported that iodoacetate, iodoacetamide, and butyl isocyanate alkylate either of two reactive cysteines of yeast alcohol dehydrogenase; both cysteines cannot be modified simultaneously [Belke et al. (1974), Biochemistry 13, 3418]. The inactivation of enzyme by p-chloromercuribenzoate (PCMB) is reported here to be accompanied by the incorporation of 2.3 mol of PCMB/mol of enzyme subunits, in analogy with styrene oxide; the planarity of the alkylating agent appears to be an important factor in determining the stoichiometry of labeling.  相似文献   

13.
The interaction of sarcoplasmic reticulum Ca(2+)-ATPase with the Mg.ATP analogues Rh(H2O)4ATP and Co(NH3)4ATP have been examined. Co(NH3)4ATP slowly inactivates Ca(2+)-ATPase in a first order process, with a rate constant of 1.13 x 10(-3) s-1 and an apparent inactivation constant, KI, of 32 mM. Rh(H2O)4ATP likewise inactivates sarcoplasmic reticulum Ca(2+)-ATPase, but the plot of reciprocal apparent inactivation rate constants versus 1/[Rh(H2O)4ATP] is biphasic. The chi-intercepts of this plot yield apparent inactivation constants for the inhibition of Ca(2+)-ATPase by Rh(H2O)4ATP of KI1 = 30 microM and KI2 = 221 microM. The corresponding values of k2, the maximal first-order rate constant for inhibition in these two phases, are 1.16 and 2.19 x 10(-4)s-1. Tridentate Rh(H2O)3ATP also inhibits Ca(2+)-ATPase, but only after much longer incubation times. Ca(2+)-ATPase inactivation is accompanied by incorporation of radioactivity from gamma-32P into an acid-precipitable enzyme. Both processes were dependent on the presence of Ca2+ ions and were quenched by excess ATP. The first-order rate constant for inactivation of Ca(2+)-dependent ATPase activity in this experiment was 2.19 x 10(-4)s-1, and the first-order rate constant for Ca(2+)-dependent E-P formation was 2.07 x 10(-4)s-1, in excellent agreement with the value for inactivation. A linear relationship is observed between ATPase inactivation and E-P formation. Moreover, atomic absorption analysis demonstrates that the phosphorylation of Ca(2+)-ATPase by Rh(H2O)4ATP is accompanied by incorporation and tight binding of rhodium, with a stoichiometry of one rhodium incorporated per ATPase molecule phosphorylated. The characteristics of ATPase inactivation and phosphorylation (i.e., Ca2+ dependence, ATP competition, agreement of rate constants, and stoichiometric rhodium incorporation) suggest that Rh(H2O)4ATP is binding to the catalytic nucleotide site on Ca(2+)-ATPase and producing a highly stable, phosphorylated intermediate.  相似文献   

14.
Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.  相似文献   

15.
P S Deng  Y Hatefi  S Chen 《Biochemistry》1990,29(4):1094-1098
N-Arylazido-beta-alanyl-NAD+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] has been prepared by alkaline phosphatase treatment of arylazido-beta-alanyl-NADP+ [N3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NADP+]. This NAD+ analogue was found to be a potent competitive inhibitor (Ki = 1.45 microM) with respect to NADH for the purified bovine heart mitochondrial NADH dehydrogenase (EC 1.6.99.3). The enzyme was irreversibly inhibited as well as covalently labeled by this analogue upon photoirradiation. A stoichiometry of 1.15 mol of N-arylazido-beta-alanyl-NAD+ bound/mol of enzyme, at 100% inactivation, was determined from incorporation studies using tritium-labeled analogue. Among the three subunits, 0.85 mol of the analogue was bound to the Mr = 51,000 subunit, and each of the two smaller subunits contained 0.15 mol of the analogue when the dehydrogenase was completely inhibited upon photolysis. Both the irreversible inactivation and the covalent incorporation could be prevented by the presence of NADH during photolysis. These results indicate that N-arylazido-beta-alanyl-NAD+ is an active-site-directed photoaffinity label for the mitochondrial NADH dehydrogenase, and are further evidence that the Mr = 51,000 subunit contains the NADH binding site. Previous studies using A-arylazido-beta-alanyl-NAD+ [A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+] demonstrated that the NADH binding site is on the Mr = 51,000 subunit [Chen, S., & Guillory, R. J. (1981) J. Biol. Chem. 256, 8318-8323]. Results are also presented to show that N-arylazido-beta-alanyl-NAD+ binds the dehydrogenase in a more effective manner than A-arylazido-beta-alanyl-NAD+.  相似文献   

16.
The substrate analogue 3-bromo-2-ketoglutarate reacts with pig heart NADP+-dependent isocitrate dehydrogenase to yield partially inactive enzyme. Following 65% inactivation, no further inactivation was observed. Concomitant with this inactivation, incorporation of 1 mol of reagent/mol of enzyme dimer was measured. The dependence of the inactivation rate on bromoketoglutarate concentration is consistent with reversible binding of reagent (KI = 360 microM) prior to irreversible reaction. Manganous isocitrate reduces the rate of inactivation by 80% but does not provide complete protection even at saturating concentrations. Complete protection is obtained with NADP+ or the NADP+-alpha-ketoglutarate adduct. By modification with [14C]bromoketoglutarate or by NaB3H4 reduction of modified enzyme, a single major radiolabeled tryptic peptide was obtained by high performance liquid chromatography with the sequence: Asp-Leu-Ala-Gly-X-Ile-His-Gly-Leu-Ser-Asn-Val-Lys. Evidence in the following paper (Bailey, J.M., Colman, R.F. (1987) J. Biol. Chem. 262, 12620-12626) indicates that X is glutamic acid. Enzyme modified at the coenzyme site by 2-(bromo-2,3-dioxobutylthio)-1,N(6)-ethenoadenosine 2',5'-biphosphate in the presence of manganous isocitrate is not further inactivated by bromoketoglutarate. Bromoketoglutarate-modified enzyme exhibits a stoichiometry of binding isocitrate and NADPH equal to 1 mol/mol of enzyme dimer, half that of native enzyme. These results indicate that bromoketoglutarate modifies a residue in the nicotinamide region of the coenzyme site proximal to the substrate site and that reaction at one catalytic site of the enzyme dimer decreases the activity of the other site.  相似文献   

17.
S P Salowe  M A Ator  J Stubbe 《Biochemistry》1987,26(12):3408-3416
Ribonucleoside diphosphate reductase (RDPR) from Escherichia coli was completely inactivated by 1 equiv of the mechanism-based inhibitor 2'-azido-2'-deoxyuridine 5'-diphosphate (N3UDP). Incubation of RDPR with [3'-3H]N3UDP resulted in 0.2 mol of 3H released to solvent per mole of enzyme inactivated, indicating that cleavage of the 3' carbon-hydrogen bond occurred in the reaction. Incubation of RDPR with [beta-32P]N3UDP resulted in stoichiometric production of inorganic pyrophosphate. One equivalent of uracil was eliminated from N3UDP, but no azide release was detected. Analysis of the reaction of RDPR with [15N3]N3UDP by mass spectrometry revealed that the azide moiety was converted to 0.9 mol of nitrogen gas per mole of enzyme inactivated. The tyrosyl radical of the B2 subunit was destroyed during the inactivation by N3UDP as reported previously [Sj?berg, B.-M., Gr?slund, A., & Eckstein, F. (1983) J. Biol. Chem. 258, 8060-8067], while the specific activity of the B1 subunit was reduced by half. Incubation of [5'-3H]N3UDP with RDPR resulted in stoichiometric covalent radiolabeling of the enzyme. Separation of the enzyme's subunits by chromatofocusing revealed that the modification was specific for the B1 subunit.  相似文献   

18.
M L Vazquez  R B Silverman 《Biochemistry》1985,24(23):6538-6543
A mechanism previously proposed for inactivation of monoamine oxidase (MAO) by N-cyclopropylbenzylamine (N-CBA) [Silverman, R. B., & Hoffman, S. J. (1980) J. Am. Chem. Soc. 102, 884-886] is revised. Inactivation of MAO by N-[1-3H]CBA results in incorporation of about 3 equiv of tritium into the enzyme and release of [3H]acrolein. Treatment of inactivated enzyme with benzylamine, a reactivator for N-CBA-inactivated MAO, releases only 1 equiv of tritium as [3H]acrolein concomitant with reactivation of the enzyme. Even after MAO is inactivated by N-[1-3H]CBA, the reaction continues. At pH 7.2, a linear release of [3H]acrolein is observed for 70 h, which produces 55 equiv of [3H]acrolein while 2.3 equiv of tritium is incorporated into the enzyme. At pH 9, only 3.5 equiv of [3H]acrolein is detected in solution after 96 h, but 40 equiv of tritium is incorporated into the enzyme, presumably as a result of greater ionization of protein nucleophiles at the higher pH. N-[1-3H]Cyclopropyl-alpha-methylbenzylamine (N-C alpha MBA) produces the same adduct as N-CBA but gives only 1-1.35 equiv of tritium bound after inactivation of the enzyme. Denaturation of labeled enzyme results in reoxidation of the flavin without release of tritium, indicating attachment is not to the flavin but rather to an amino acid residue. Enzyme inactivated with N-[1-3H]C alpha MBA is reactivated by benzylamine with the release of 1 equiv of [3H]acrolein, which must have come from an adduct attached to an active site amino acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The extracellular phospholipase A2s (PLA2) from cobra venom, rattlesnake venom, and porcine pancreas were analyzed by radiation inactivation to determine their functional aggregation states. The analysis was performed in the presence of the protein transferrin at two different concentrations of PLA2: 5 micrograms/ml. The small size of these proteins necessitated the use of high radiation dosages. The catalytic activity of all samples decreased as a single exponential as a function of radiation dosage, to > 97% inactivation. Target size analysis of these curves yielded sizes corresponding to dimers for all three PLA2s, indicating that all three enzymes exist as dimers or larger aggregates under the conditions studied. An analysis of the amount of intact protein remaining by sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that the loss of protein also followed a dimeric size for all three PLA2s. The loss of protein as a dimer indicates that transfer of radiation energy is occurring between polypeptides.  相似文献   

20.
Lee P  Gorrell A  Fromm HJ  Colman RF 《Biochemistry》1999,38(18):5754-5763
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate (6-BDB-TAMP) at pH 7.0 and 25 degrees C. The initial fast-phase inactivation is not affected by the presence of active-site ligands and can be completely eliminated by blocking Cys291 of the enzyme with N-ethylmaleimide (NEM). Reaction of the NEM-treated enzyme with 6-BDB-[32P]TAMP results in 2 mol of reagent incorporated/mol of enzyme subunit. The inactivation kinetics of the slow-phase exhibit an apparent KI of 40.6 microM and kmax of 0.0228 min-1. Active-site ligands, either adenylosuccinate or IMP and GTP, completely prevent inactivation of the enzyme by 6-BDB-TAMP, whereas IMP or IMP and aspartate is much less effective in protection. 6-BDB-TAMP-inactivated enzyme has a 3-fold increase in Km for aspartate with no change in Km for IMP or GTP. Protease digestion of 6-BDB-[32P]TAMP inactivated enzyme reveals that both Arg131 and Arg303 are modified by the affinity-labeling reagent. The crystal structure [Poland, B. W., Fromm, H. J., and Honzatko, R. B. (1996) J. Mol. Biol. 264, 1013-1027] and site-directed mutagenesis [Kang, C., Sun, N., Poland, B. W., Gorrell, A., and Fromm, H. J. (1997) J. Biol. Chem. 272, 11881-11885] of E. coli adenylosuccinate synthetase show that Arg303 interacts with the carboxyl group of aspartate and the 2'-OH of the ribose of IMP and Arg131 is involved in stabilizing aspartate in the active site of the enzyme. We conclude that 6-BDB-TAMP functions as a reactive adenylosuccinate analogue in modifying both Arg131 and Arg303 in the active site of adenylosuccinate synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号