首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TNF-related activation-induced cytokine (TRANCE) is a member of the TNF family recently identified in activated T cells. We report here that TRANCE mRNA is constitutively expressed in memory, but not naive, T cells and in single-positive thymocytes. Upon TCR/CD3 stimulation, TRANCE mRNA and surface protein expression are rapidly up-regulated in CD4+ and CD8+ T cells, which can be further enhanced on CD4+ T cells by CD28-mediated costimulation. However, TRANCE induction is significantly suppressed when cells are stimulated in the presence of IL-4, but is not modified in the presence of IFN-alpha, IFN-gamma, TGF-beta, TNF-alpha, or IL-2. High levels of TRANCE receptor expression are found on mature dendritic cells (DCs). In this study we show that activated T and B cells also express TRANCE receptor, but only at low levels. TRANCE, however, does not exert any significant effect on the proliferation, activation, or survival of those cells. In DCs, TRANCE induces the expression of proinflammatory cytokines (IL-6, IL-1) and T cell growth and differentiation factors (IL-12, IL-15) in addition to enhancing DC survival. Moreover, TRANCE cooperates with CD40 ligand or TNF-alpha to further increase the viability of DCs, suggesting that several TNF-related molecules on activated T cells may cooperatively regulate the function and survival of DCs to enhance T cell-mediated immune responses.  相似文献   

2.
The influence of environmental factors (cytokines, matrix components, serum factors and O(2) level) on expression of receptors for angiogenic versus angiostatic CXC chemokines in human microvascular endothelial cells has not been extensively investigated. Our semi-quantitative RT-PCR analysis demonstrated that TNF-alpha and IFN-gamma repressed CXCR4 mRNA levels in immortalized human microvascular endothelial HMEC-1 cells after 4 h, whereas only TNF-alpha displayed inhibitory activity in primary human microvascular endothelial cells (HMVEC). CXCR4 mRNA expression was not affected by VEGF, GM-CSF, IL-1beta or various basal membrane matrix components, but was significantly up-regulated after serum starvation and/or hypoxic treatment of the microvascular endothelial cells. The alternative CXCL12 receptor, CXCR7/RDC1, was also up-regulated by hypoxia in HMEC-1 cells, although less consistently than CXCR4. Furthermore, hypoxia and serum starvation were required for cell surface display of CXCR4 and CXCL12 induction of ERK activation in HMEC-1 cells. In contrast, CXCR2 and CXCR3 mRNA levels remained, respectively, low and undetectable under all the conditions tested, and surface expression of CXCR2, CXCR3 and CXCR7 on the HMEC- 1 cells could not be demonstrated by FACS. In the human SK-MEL-5 melanoma cell line, CXCR4 mRNA expression was also increased under hypoxic conditions, whereas CXCR2 mRNA levels remained low and levels of CXCR3 and CXCR7 were undetectable. However, immunohistochemical staining of human metastatic melanoma sections demonstrated that CXCR2, CXCR3, CXCR4 and CXCR7 are expressed on tumor cells and, to a lesser extent, on endothelial cells. These results demonstrate that the tumor microenvironment regulates chemokine receptor expression through both cytokine and oxygen levels.  相似文献   

3.
Hao X  Kim TS  Braciale TJ 《Journal of virology》2008,82(10):4908-4919
Dendritic cells (DC) are believed to play an important role in the initiation of innate and adaptive immune responses to infection, including respiratory tract infections, where respiratory DC (RDC) perform this role. In this report, we examined the susceptibilities of isolated murine RDC to influenza virus infection in vitro and the effect of the multiplicity of infection (MOI) on costimulatory ligand upregulation and inflammatory cytokine/chemokine production after infection. We found that the efficiency of influenza virus infection of RDC increased with increasing MOIs. Furthermore, distinct subpopulations of RDC differed in their susceptibilities to influenza virus infection and in the magnitude/tempo of costimulatory ligand expression. Additional characterization of the CD11c-positive (CD11c(+)) RDC revealed that the identifiable subsets of RDC differed in susceptibility to infection, with CD11c(+) CD103(+) DC exhibiting the greatest susceptibility, CD11c(+) CD11b(hi) DC exhibiting intermediate susceptibility, and CD11c(+) B220(+) plasmacytoid DC (pDC) exhibiting the least susceptibility to infection. A companion analysis of the in vivo susceptibilities of these RDC subsets to influenza virus revealed a corresponding infection pattern. The three RDC subsets displayed different patterns of cytokine/chemokine production in response to influenza virus infection in vitro: pDC were the predominant producers of most cytokines examined, while CD103(+) DC and CD11b(hi) DC produced elevated levels of the murine chemokine CXCL1 (KC), interleukin 12p40, and RANTES in response to influenza virus infection. Our results indicate that RDC are targets of influenza virus infection and that distinct RDC subsets differ in their susceptibilities and responses to infection.  相似文献   

4.
Common variable immune deficiency (CVID) is a primary immune deficiency characterized by low levels of serum immune globulins, lack of Ab, and reduced numbers of CD27+ memory B cells. Although T, B, and dendritic cell defects have been described, for the great majority, genetic causes have not been identified. In these experiments, we investigated B cell and plasmacytoid dendritic cell activation induced via TLR9, an intracellular recognition receptor that detects DNA-containing CpG motifs from viruses and bacteria. CpG-DNA activates normal B cells by the constitutively expressed TLR9, resulting in cytokine secretion, IgG class switch, immune globulin production, and potentially, the preservation of long-lived memory B cells. We found that CpG-DNA did not up-regulate expression of CD86 on CVID B cells, even when costimulated by the BCR, or induce production of IL-6 or IL-10 as it does for normal B cells. TLR9, found intracytoplasmically and on the surface of oligodeoxynucleotide-activated normal B cells, was deficient in CVID B cells, as was TLR9 mRNA. TLR9 B cell defects were not related to proportions of CD27+ memory B cells. CpG-activated CVID plasmacytoid dendritic cells did not produce IFN-alpha in normal amounts, even though these cells contained abundant intracytoplasmic TLR9. No mutations or polymorphisms of TLR9 were found. These data show that there are broad TLR9 activation defects in CVID which would prevent CpG-DNA-initiated innate immune responses; these defects may lead to impaired responses of plasmacytoid dendritic cells and loss of B cell function.  相似文献   

5.
6.
The Toll-like receptor (TLR)9 is critical for the recognition of immunostimulatory CpG motifs but may cooperate with other TLRs. We analyzed TLR1-10 mRNA expression by using quantitative real-time PCR in highly purified subsets of human PBMC and determined the sensitivity of these subsets to CpG oligodeoxynucleotides (ODN). TLR1 and TLR6 were expressed in all cell types examined. TLR10 was highly expressed in B cells and weakly expressed in plasmacytoid dendritic cells (PDC). High expression of TLR2 was characteristic for monocytes. PDC and B cells expressed marked levels of TLR7 and TLR9 and were directly sensitive to CpG ODN. In CpG ODN-stimulated PDC and B cells, TLR9 expression rapidly decreased, as opposed to TLR7, which was up-regulated in PDC and decreased in B cells. In monocytes, NK cells, and T cells, TLR7 was absent. Despite low expression of TLR9, monocytes, NK cells, and T cells did not respond to CpG ODN in the absence of PDC but were activated in the presence of PDC. In conclusion, our studies provide evidence that PDC and B cells, but not monocytes, NK cells, or T cells, are primary targets of CpG ODN in peripheral blood. The characteristic expression pattern of TLR1-10 in cellular subsets of human PBMC is consistent with the concept that TLR9 is essential in the recognition of CpG ODN in PDC and B cells. In addition, selective regulation of TLR7 expression in PDC and B cells by CpG ODN revealed TLR7 as a candidate TLR potentially involved in modulating the recognition of CpG motifs.  相似文献   

7.
We have isolated a portion of the canine gene encoding the orphan receptor RDC1 [1]. The complete coding sequence is contained in a single exon, and an intron divides the 5' untranslated region of RDC1 mRNA. The RDC1 protein is 94% homologous to the gene product of GPRN1, which has been proposed to serve as a VIP receptor when expressed in CHO-K1 and COS-7 cells (Sreedharan, S.P. et al. (1991) Proc. Natl. Acad. Sci. USA 88, 4986-4990). Northern analysis indicates that CHO-K1 cells endogenously express a 2.1 kb RDC1 mRNA. However, while CHO-K1 cells possess detectable low affinity [125I]VIP binding sites, VIP binding is not altered in membranes of CHO-K1 cells expressing varying amounts of the RDC1 gene construct. Further, endogenous VIP binding is not increased by transient expression of RDC1 in COS-7 cells. Taken together, the data suggest that RDC1 is not a canine homolog of the proposed VIP receptor.  相似文献   

8.
9.
Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103(+) DC, CD11b(hi) DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103(+) and CD11b(hi) RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract.  相似文献   

10.
Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.  相似文献   

11.
It has been suggested that B cells acquire the capacity for secondary V(D)J recombination during germinal center (GC) reactions. The nature of these B cells remains controversial. Subsets of tonsil and blood B cells and also individual B cells were examined for the expression of recombination-activating gene (RAG) mRNA. Semiquantitative analysis indicated that RAG1 mRNA was present in all tonsil B cell subsets, with the largest amount found in naive B cells. RAG2 mRNA was only found in tonsil naive B cells, centrocytes, and to a lesser extent in centroblasts. Neither RAG1 nor RAG2 mRNA was routinely found in normal peripheral blood B cells. In individual tonsil B cells, RAG1 and RAG2 mRNAs were found in 18% of naive B cells, 22% of GC founder cells, 0% of centroblasts, 13% of centrocytes, and 9% of memory B cells. Individual naive tonsil B cells containing both RAG1 and RAG2 mRNA were activated (CD69(+)). In normal peripheral blood approximately 5% of B cells expressed both RAG1 and RAG2. These cells were uniformly postswitch memory B cells as documented by the coexpression of IgG mRNA. These results indicate that coordinate RAG expression is not found in normal peripheral naive B cells but is up-regulated in naive B cells which are activated in the tonsil. With the exception of centroblasts, RAG1 and RAG2 expression can be found in all components of the GC, including postswitch memory B cells, some of which may circulate in the blood of normal subjects.  相似文献   

12.
Dendritic cells (DC) comprise a key part of the innate immune system that, upon activation, profoundly influences the nature of the adaptive T cell response. In this study, we present evidence that signaling lymphocytic activation molecule (SLAM), a molecule first identified in activated T and B cells, is strongly up-regulated in DC activated through CD40, as well as in response to inflammatory stimuli, including polyinosinic polycytidylic acid and LPS. mRNA encoding both membrane-bound and soluble secreted isoforms of SLAM was detected in CD40 ligand-activated DC, comprising two of the four known SLAM isoforms. Expression of membrane-bound SLAM protein peaked at 12 h poststimulation with CD40 ligand, gradually returning to baseline levels after 6 days. SLAM up-regulation appears to be a direct result of the induction of DC maturation, as inflammatory cytokines released during this process do not affect SLAM expression. Functionally, engagement of SLAM enhances DC production of IL-12 and IL-8, while having no effect on production of IL-10. Because SLAM is involved in the activation of T cells, the expression of SLAM on DC may provide a bidirectional signaling mechanism in which interacting DC and T cells are simultaneously and synergistically activated to mount proinflammatory Th1 responses.  相似文献   

13.
The purpose of this study was to investigate the expression level of adiponectin and its related molecules in hypertrophied and atrophied skeletal muscle in mice. The expression was also evaluated in C2C12 myoblasts and myotubes. Both mRNA and protein expression of adiponectin, mRNA expression of adiponectin receptor (AdipoR) 1 and AdipoR2, and protein expression of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) were observed in C2C12 myoblasts. The expression levels of these molecules in myotubes were higher than those in myoblasts. The expression of adiponectin-related molecules in soleus muscle was observed at mRNA (adiponectin, AdipoR1, AdipoR2) and protein (adiponectin, APPL1) levels. The protein expression levels of adiponectin and APPL1 were up-regulated by 3 weeks of functional overloading. Down-regulation of AdipoR1 mRNA, but not AdipoR2 mRNA, was observed in atrophied soleus muscle. The expression of adiponectin protein, AdipoR1 mRNA, and APPL1 protein was up-regulated during regrowth of unloading-associated atrophied soleus muscle. Mechanical loading, which could increase skeletal muscle mass, might be a useful stimulus for the up-regulations of adiponectin and its related molecules in skeletal muscle.  相似文献   

14.
Signaling lymphocyte activation molecule (SLAM), a 70-kDa costimulatory molecule that mediates CD28-independent proliferation of T cells and IFN-gamma production, has been identified on human T cells, immature thymocytes, and a subset of B cells. We have found that SLAM is expressed on mature but not immature dendritic cells (DC). However, the SLAM-associated protein, is missing in DC. SLAM surface expression is strongly up-regulated by IL-1beta. Addition of IL-1beta to the DC maturation mixture also increases the stimulatory properties of DC. These findings provide a new marker for DC maturation and help to explain two areas of DC biology. First, SLAM is a receptor for the measles virus, previously shown to infect DC. Second, SLAM could possibly contribute to the enhanced immunostimulatory functions of DC that are observed following the addition of IL-1.  相似文献   

15.
FcgammaRIIb (CD32B, Online Mendelian Inheritance in Man 604590), an IgG FcR with a tyrosine-based inhibitory motif, plays a critical role in the balance of tolerance and autoimmunity in murine models. However, the high degree of homology between FcgammaRIIb and FcgammaRIIa in humans and the lack of specific Abs to differentiate them have hampered study of the normal expression profile of FcgammaRIIb and its potential dysregulation in autoimmune diseases such as systemic lupus erythematosus (SLE). Using our newly developed anti-FcgammaRIIb mAb 4F5 which does not react with FcgammaRIIa, we found that FcgammaRIIb is expressed on the cell surface of circulating B lymphocytes, monocytes, neutrophils, myeloid dendritic cells (DCs), and at very low levels on plasmacytoid DCs from some donors. Normal donors with the less frequent 2B.4 promoter haplotype have higher FcgammaRIIb expression on monocytes, neutrophils, and myeloid DCs similar to that reported for B lymphocytes, indicating that FcgammaRIIb expression on both myeloid and lymphoid cells is regulated by the naturally occurring regulatory single nucleotide polymorphisms in the FCGR2B promoter. FcgammaRIIb expression in normal controls is up-regulated on memory B lymphocytes compared with naive B lymphocytes. In contrast, in active SLE, FcgammaRIIb is significantly down-regulated on both memory and plasma B lymphocytes compared with naive and memory/plasma B lymphocytes from normals. Similar down-regulation of FcgammaRIIb on myeloid-lineage cells in SLE was not seen. Our studies demonstrate the constitutive regulation of FcgammaRIIb by natural gene polymorphisms and the acquired dysregulation in SLE autoimmunity, which may identify opportunities for using this receptor as a therapeutic target.  相似文献   

16.
The purpose of this study was to identify an endometrial cell line that maintained the E2 up-regulation of estrogen receptor (ER) mRNA by enhanced message stability and to assess its dependence on ER protein. Estradiol (E2) effects on gene expression were measured in three cell lines: one immortalized from sheep endometrial stroma (ST) and two from human endometrial adenocarcinomas (Ishikawa and ECC-1). E2 up-regulated ER mRNA levels in ST and Ishikawa cells, but down-regulated ER mRNA levels in ECC-1 cells. E2 up-regulated progesterone receptor (PR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and transforming growth factor-alpha (TGF-alpha) in both Ishikawa and ECC-1 cells. The selective estrogen receptor modulator ICI 182,780 antagonized the E2-induced up-regulation of ER and/or PR mRNA levels in all three cells, while another, GW 5638, antagonized the up-regulation of PR mRNA in Ishikawa and ECC-1 cells. In mechanistic studies, E2 had no effect on ER mRNA stability in ST cells and it destabilized ER mRNA in ECC-1 cells. Thus, Ishikawa cells appear to be the most physiologically relevant cell line in which to study the up-regulation of ER mRNA levels by enhanced mRNA stability. Its antagonism by ICI 182,780 reveals that ER protein is involved in this E2 response.  相似文献   

17.
We have previously reported that mouse plasmacytoid dendritic cells (DC) produce high levels of IL-12p70, whereas bone marrow-derived myeloid DC and splenic DC produce substantially lower levels of this cytokine when activated with the TLR-9 ligand CpG. We now show that in response to CpG stimulation, high levels of IL-10 are secreted by macrophages, intermediate levels by myeloid DC, but no detectable IL-10 is secreted by plasmacytoid DC. MyD88-dependent TLR signals (TLR4, 7, 9 ligation), Toll/IL-1 receptor domain-containing adaptor-dependent TLR signals (TLR3, 4 ligation) as well as non-TLR signals (CD40 ligation) induced macrophages and myeloid DC to produce IL-10 in addition to proinflammatory cytokines. IL-12p70 expression in response to CpG was suppressed by endogenous IL-10 in macrophages, in myeloid DC, and to an even greater extent in splenic CD8alpha(-) and CD8alpha(+) DC. Although plasmacytoid DC did not produce IL-10 upon stimulation, addition of this cytokine exogenously suppressed their production of IL-12, TNF, and IFN-alpha, showing trans but not autocrine regulation of these cytokines by IL-10 in plasmacytoid DC.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号