首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In search for sea ice bacteria and their phages from the Baltic Sea ice, two ice samples were collected from land-fast ice in a south-west Finland coastal site in February and March 2011. Bacteria were isolated from the melted sea ice samples and phages were screened from the same samples for 43 purified isolates. Plaque-producing phages were found for 15 bacterial isolates at 3 °C. Ten phage isolates were successfully plaque purified and eight of them were chosen for particle purification to analyze their morphology and structural proteins. Phage 1/32 infecting an isolate affiliated to phylum Bacteroidetes (Flavobacterium sp.) is a siphovirus and six phages infecting isolates affiliated to γ-Proteobacteria (Shewanella sp.) hosts were myoviruses. Cross titrations between the hosts showed that all studied phages are host specific. Phage solutions, host growth and phage infection were tested in different temperatures revealing phage temperature tolerance up to 45 °C, whereas phage infection was in most of the cases retarded above 15 °C. This study is the first to report isolation and cultivation of ice bacteria and cold-active phages from the Baltic Sea ice.  相似文献   

2.
F-specific RNA phages can be used as model organisms for enteric viruses to monitor the effectiveness of sewage treatment, and to assess the potential contamination of surface water with these viruses. In this paper a method is described which identifies RNA phages quantitatively by a plaque hybridization assay. Oligonucleotide probes were developed that can assign phages to their phylogenetic subgroups. Such a distinction is important, since some subgroups preferentially occur in sewage of human origin, while others tend to be associated with animal wastewater. The method has been tested on a large number of isolates and represents an improvement in time and reliability over the previously used serological classification.  相似文献   

3.
In recent years, blooms of toxic Alexandrium ostenfeldii strains have been reported from around the world. In 2013, the species formed a red tide in a shallow lagoon in western Japan, which was the first report of the species in the area. To investigate the genetic relatedness of Japanese A. ostenfeldii and global isolates, the full-length SSU, ITS and LSU sequences were determined, and phylogenetic analyses were conducted for isolates from western and northern Japan and from the Baltic Sea. Genotyping and microsatellite sequence comparison were performed to estimate the divergence and connectivity between the populations from western Japan and the Baltic Sea. In all phylogenetic analyses, the isolates from western Japan grouped together with global isolates from shallow and low saline areas, such as the Baltic Sea, estuaries on the east coast of U.S.A. and from the Bohai Sea, China. In contrast, the isolates from northern Japan formed a well-supported separate group in the ITS and LSU phylogenies, indicating differentiation between the Japanese populations. This was further supported by the notable differentiation between the sequences of western and northern Japanese isolates, whereas the lowest differentiation was found between the western Japanese and Chinese isolates. Microsatellite genotyping revealed low genetic diversity in the western Japanese population, possibly explained by a recent introduction to the lagoon from where it was detected. The red tide recorded in the shallow lagoon followed notable changes in the salinity of the waterbody and phytoplankton composition, potentially facilitating the bloom of A. ostenfeldii.  相似文献   

4.
Native marine bacteriophages   总被引:13,自引:0,他引:13  
Abstract Isolation and cultivation of marine bacteriophages have shown that they are ubiquitous in seawater, and direct counting has shown that the total numbers of viruses frequently exceed the bacterial concentration by a factor of 10. About 150 different isolates of phages from marine environments have been characterized in the literature reviewed in the present report. Knoblike projections on phage heads seem to be a morphological property more common in marine phages than among phages from other sources. The cultured phages were generally much larger than the majority of viruses observed by direct transmission electron microscopy of seawater samples, indicating that culturing methods are not providing unbiased samples of environmental viruses. Cultured marine viruses frequently are more sensitive to organic solvents than the more intensively studied phages from other sources. Burst sizes from recent in situ studies are 50% lower than the average from culture studies. Phages in the marine environment may have half lives lasting less than a day, with consequent high turnover. Host ranges varies, and cross species host ranges have not been demonstrated. More information and further development of methods are needed, both from culture and from in situ studies.  相似文献   

5.
The fish pathogen Flavobacterium psychrophilum infects farmed salmonids worldwide, and application of bacteriophages has been suggested for controlling disease outbreaks in aquaculture. Successful application of phages requires detailed knowledge about the variability in phage susceptibility of the host communities. In this study, we analysed the genetic diversity of F. psychrophilum hosts and phages from the Baltic Sea area to identify genetic determinants of phage-host interaction patterns. A host range analysis of 103 phages tested against 177 F. psychrophilum strains (18 231 phage–host interactions) identified nine phage clusters, infecting from 10% to 91% of the strain collection. The core genome-based comparison of 35 F. psychrophilum isolates revealed an extremely low overall genomic diversity (>99.5% similarity). However, a small subset of 16 ORFs, including genes involved in the type IX secretion system (T9SS), gliding motility and hypothetical cell-surface related proteins, exhibited a highly elevated genetic diversity. These specific genetic variations were linked to variability in phage infection patterns obtained from experimental studies, indicating that these genes are key determinants of phage susceptibility. These findings provide novel insights on the molecular mechanisms determining phage susceptibility in F. psychrophilum and emphasizes the importance of phages as drivers of core genomic diversity in this pathogen.  相似文献   

6.
The filamentous diazotrophic cyanobacterium Nodularia forms water blooms each year in the Baltic Sea. Filaments isolated from such water blooms vary in their trichome width, degree of coiling, and properties of their gas vesicles; previously, these characters have been used to classify individuals to species level. To test the validity of such a phenotypic classification, we determined the nucleotide sequences for a region of the phycocyanin locus that includes a noncoding intergenic spacer (PC-IGS), the IGS between two adjacent copies of the gvpA gene (which encodes the main structural gas vesicle protein) and the rDNA internal transcribed spacer (rDNA-ITS), for 13 clonal Nodularia isolates from the Baltic Sea during August 1994. The complete 16S-rDNA sequence was determined for three isolates and was found to be identical in each of them. Molecular sequences for noncoding regions of the genome were used to assign isolates to three groups on the basis of PC-IGS, two groups on the basis of gvpA -IGS, and three groups on the basis of rDNA-ITS. No consistent correlation was found between genotype and any of the phenotypic features examined, and no link was found between any of these features themselves, indicating that these characters are not useful for placing Nodularia isolates into meaningful taxonomic groups. The PC-IGS, gvpA -IGS, and rDNA-ITS genotypic groupings were not congruent. This might indicate that gene flow occurs between individuals in Nodularia populations.  相似文献   

7.
The Archipelago Sea in the northern Baltic has been subjected to large-scale cultural, economic and ecological changes, especially during the last three decades. Environmental threats originate from both basin-wide sources, affecting the whole Baltic Sea, and from local sources, such as nutrient loading from nearby river outflows, intense agriculture, fish farming, ships' traffic, boating, and man's physical impacts on the landscape and seascape. Both the Åland archipelago and the Archipelago Sea have been listed as hot-spots by HELCOM, Baltic Marine Environment Protection Commission, eutrophication being the main threat to the aquatic environment. In this study we review how biological communities have reacted to an increase in man-induced multisource stresses. Changes in plankton, benthic animals, macroalgal assemblages and fish communities have been documented in most parts of the Baltic Sea since the 1970s. What remains to be understood is the importance of these structural changes for the functioning of the Archipelago Sea ecosystem under various levels of human impact.  相似文献   

8.
Phage predation constitutes a major mortality factor for bacteria in aquatic ecosystems, and thus, directly impacts nutrient cycling and microbial community dynamics. Yet, the population dynamics of specific phages across time scales from days to months remain largely unexplored, which limits our understanding of their influence on microbial succession. To investigate temporal changes in diversity and abundance of phages infecting particular host strains, we isolated 121 phage strains that infected three bacterial hosts during a Baltic Sea mesocosm experiment. Genome analysis revealed a novel Flavobacterium phage genus harboring gene sets putatively coding for synthesis of modified nucleotides and glycosylation of bacterial cell surface components. Another novel phage genus revealed a microdiversity of phage species that was largely maintained during the experiment and across mesocosms amended with different nutrients. In contrast to the newly described Flavobacterium phages, phages isolated from a Rheinheimera strain were highly similar to previously isolated genotypes, pointing to genomic consistency in this population. In the mesocosm experiment, the investigated phages were mainly detected after a phytoplankton bloom peak. This concurred with recurrent detection of the phages in the Baltic Proper during summer months, suggesting an influence on the succession of heterotrophic bacteria associated with phytoplankton blooms.  相似文献   

9.
In Finland, viral haemorrhagic septicaemia virus (VHSV) was diagnosed for the first time in 2000 from 4 rainbow trout farms in brackish water. Since then the infection has spread and, by the end of 2004, VHSV had been isolated from 24 farms in 3 separate locations: 2 in the Baltic Sea and 1 in the Gulf of Finland. The pathogenicity of 3 of these isolates from 2 separate locations was analysed in infection experiments with rainbow trout fry. The cumulative mortalities induced by waterborne and intraperitoneal challenge were approximately 40 and 90 %, respectively. Pair-wise comparisons of the G and NV gene regions of Finnish VHSV isolates collected between 2000 and 2004 revealed that all isolates were closely related, with 99.3 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis revealed that they were closely related to the old freshwater isolates from rainbow trout in Denmark and to one old marine isolate from cod in the Baltic Sea, and that they were located close to the presumed ancestral source. As the Finnish isolates induce lower mortality than freshwater VHSV isolates in infection experiments, they could represent an intermediate stage of marine isolates evolving towards pathogenicity in rainbow trout.  相似文献   

10.
Ceramium tenuicorne (Kützing) Wærn is a red alga that is widely distributed in the brackish Baltic Sea. We studied the growth response of Ceramium to low salinity and nutrient enrichment, using isolades from two regions of the Baltic Sea where the alga approaches its inner distribution limit. Ecotypic differentiation was observed in that differences in growth response among isolates corresponded to salinity conditions in their regions of origin. Isolates from the Gulf of Bothnia (4 psu) had inherently lower growth rates that were not increased when transferred to higher salinity, but were better adapted to very low salinity levels than isolates from the Baltic Proper (7 psu). Further, the results indicate that Ceramium from different regions of the Baltic Sea vary in their responses to nutrient enrichment. The observed differences may be best described as a quantitative difference in the proportion of isolates with hyposaline adaptation. The results indicate that the wide distribution of Ceramium in the Baltic Sea is better explained by the occurrence of locally adapted genotypes than by a generalist life strategy, and provide example of adaptive differentiation in a marine edge environment.  相似文献   

11.
Virus-associated mass mortalities among several marine mammal populations inhabiting industrialized coastal areas have generated an interest in wildlife immunotoxicology. Despite the isolation of previously uncharacterized viruses from victims, a contribution of immunotoxic contaminants to the severity of the outbreaks could not be ruled out. Fish-eating marine mammals, including seals, occupy high trophic levels in the aquatic food chain, and accumulate high levels of contaminants including polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychorinated dibenzofurans (PCDFs). Such chemicals have been found to be immunotoxic at low doses in studies of laboratory animals. While associations have been established between environmental contaminants and various adverse biological effects in certain free-ranging seal populations, evidence for immunotoxicity has, until recently, been lacking. To this end, we carried out an immunotoxicological study, in which captive harbor seals were fed herring from either relatively uncontaminated sites of the Atlantic Ocean, or from the highly contaminated Baltic Sea. In this review, we summarize the contaminant-related immunosuppression observed in the captive group of seals fed herring from the Baltic Sea, and discuss these results in the context of what is currently known about outbreaks of virus infection, comparative immunology, and environmental contaminants. We also describe two parallel studies, in which laboratory rats exposed as adults or perinatally to the contaminants in the Baltic Sea herring, exhibited immunotoxicity. On the basis of these and other studies, we conclude that complex mixtures of environmental contaminants may represent a real immunotoxic risk to free-ranging marine mammals in many areas of Europe and North America.  相似文献   

12.
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.  相似文献   

13.
The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system''s diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity.  相似文献   

14.
Recent years have seen renewed interest in phage therapy – the use of viruses to specifically kill disease‐causing bacteria – because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre‐adapted all phage strains against all bacterial strains and then compared the efficacy of pre‐adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre‐adaptation, and as a result, phage therapies might need to be individually adjusted for different patients.  相似文献   

15.
In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts'' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.  相似文献   

16.
Marginal populations are often isolated and under extreme selection pressures resulting in anomalous genetics. Consequently, ecosystems that are geographically and ecologically marginal might have a large share of genetically atypical populations, in need of particular concern in management of these ecosystems. To test this prediction, we analysed genetic data from 29 species inhabiting the low saline Baltic Sea, a geographically and ecologically marginal ecosystem. On average Baltic populations had lost genetic diversity compared to Atlantic populations: a pattern unrelated to dispersal capacity, generation time of species and taxonomic group of organism, but strongly related to type of genetic marker (mitochondrial DNA loci had lost c. 50% diversity, and nuclear loci 10%). Analyses of genetic isolation by geographic distance revealed clinal patterns of differentiation between Baltic and Atlantic regions. For a majority of species, clines were sigmoid with a sharp slope around the Baltic Sea entrance, indicating impeded gene flows between Baltic and Atlantic populations. Some species showed signs of allele frequencies being perturbed at the edge of their distribution inside the Baltic Sea. Despite the short geological history of the Baltic Sea (8000 years), populations inhabiting the Baltic have evolved substantially different from Atlantic populations, probably as a consequence of isolation and bottlenecks, as well as selection on adaptive traits. In addition, the Baltic Sea also acts a refuge for unique evolutionary lineages. This marginal ecosystem is thus vulnerable but also exceedingly valuable, housing unique genes, genotypes and populations that constitute an important genetic resource for management and conservation.  相似文献   

17.
The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native “brackish” composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.  相似文献   

18.
Colonial and filamentous cyanobacteria frequently have bacteria associated with their extracellular mucus zone or more tightly attached to their cells surface. The toxin-producing cyanobacterium Nodularia spumigena is an important component of the Baltic Sea plankton community, and its filaments are likely to provide a microenvironment suitable for the development of a particular bacteria flora. In the present work, 13 bacterial strains associated with filaments of N. spumigena from the Baltic Sea were isolated and identified by sequencing the 16S rRNA gene. Different bacterial lineages were found associated with the cyanobacterial filaments, including the alpha, beta, and gamma subdivisions of the class Proteobacter and the division Firmicutes (Gram-positive bacteria). Several 16S rRNA gene sequences were not closely related to previously reported sequences of cultured bacteria from the Baltic Sea or to any other reported sequence. Conversely, sequences related to the gamma Proteobacter genus Shewanella, a group previously described in the Baltic Sea, were found among the isolates. The bacterial isolates were grown and added to cultures of exponentially growing N. spumigena. Five isolates, related to the alpha and gamma Proteobacter and Firmicutes, affected negatively the cyanobacterial growth, leading to a lower biomass yield up to 38% relative to controls with no bacteria addition. Five gamma Proteobacter-related strains had no effect on the cyanobacterial growth, while three strains related to Shewanella baltica had a positive effect. Although none of the bacterial isolates showed strong algicidal effect, the observed stimulatory and retarding effects on N. spumigena growth under culture conditions denotes the importance of the associated bacterial community for the dynamics of these cyanobacterial populations in nature. Moreover, several new taxa recovered in this study probably belong to species not yet described.  相似文献   

19.
Forty Ectocarpus siliculosus isolates from a wide geographical range, including gametophyte and sporophyte plants, have all been acclimated to the same salinity for several years. Their salinity tolerances in respect of cell viability, photosynthesis and dark respiration were evaluated over the salinity range: 8 to 96 ‰. Significant differences in the physiological tolerances to salt stress compared with viability measurements were evident. Genotypic differences in salt tolerances between groupings of the isolates, and also differences in responses of gametophyte and sporophyte generations were found. However, diploid and haploid sporophyte material had similar tolerances. Triploid and tetraploid sporophytes did not have improved tolerances over those of diploid plants. Culture plants originating from low salinities in the Baltic Sea had broader tolerances than field material collected from Baltic waters of similar salinity.  相似文献   

20.
In the past years, late summer blooms of the bioluminescent dinoflagellate Alexandrium ostenfeldii have become a recurrent phenomenon in coastal waters of the central and Northern Baltic Sea. This paper reports exceptionally high cell concentrations (105 to 106 cells L?1) of the species found during bioluminescent blooms in 2003 and 2004 in a shallow embayment of the Åland archipelago at the SW coast of Finland. Clonal cultures were established for morphological, molecular, toxicological and ecophysiological investigations to characterize the Finnish populations and compare them to other global A. ostenfeldii isolates. The Finnish isolates exhibited typical morphological features of A. ostenfeldii such as large size, a prominent ventral pore and an orthogonally bent first apical plate. However, unambiguous differentiation from closely related Alexandrium peruvianum was difficult due to considerable variation of sulcal anterior plate shapes. The Finnish strains were genetically distinct from other isolates of the species, but phylogenetic analyses revealed a close relationship to isolates from southern England and an A. peruvianum morphotype from the Spanish Mediterranean. Together these isolates formed a distinct clade which was separated from a clade containing other Northern European, North American and New Zealand populations. Toxin analyses confirmed the presence of the PSP toxins GTX2, GTX3 and STX in both Finnish isolates with GTX3 being the dominant toxin. Total relative PSP toxin contents were moderate, ranging from approximately 6 to 15 fmol cell?1 at local salinities of 5 and 10 psu, respectively. Spirolides were not detected. Salinity tolerance experiments showed that the Finnish isolates were well adapted to grow at the low salinities of the Baltic Sea. With a salinity range of approximately 6 to 20–25 psu, Baltic populations are physiologically distinct from their marine relatives. Vigorous production of different cyst types in the cultures suggest that cysts may play a crucial role in the survival and retainment of A. ostenfeldii populations in the Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号