首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the dynamic nature of spatial pattern, the temporal variation of spatial structure of marine benthic assemblages is rarely assessed using several temporal scales. We quantified the variability of density and biomass of main benthic species in the intertidal soft-bottom flats at two bights in Chupa Inlet (Kandalaksha Bay, the White Sea). The data cover the 21-year period (1987–2008) of a long-term monitoring survey (1987–present) using a hierarchical sampling design with two temporal (year, season within a year) and three spatial scales (bights—7 km, stations within a bight—10–100 m, and replicate samples—10 s cm apart). We used nested ANOVA to test significance and variance components to compare the relative contribution of different scales of variability of density and biomass of 18 most occurring macrobenthic species. Some species demonstrated high large-scale variability, however, the majority showed high small-scale variability and residual variance. The interactive variability was at least as important as the temporal effects, indicating that the spatial pattern changes through time. The assemblages were more variable at small scales and more stable at larger scales. Potential implications for sampling design are discussed.  相似文献   

2.
Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10?s?km, km, 10?s?m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10?s?m to km scales. Densities of commercial size crabs differed at the scales of 10?s?m and 10?s?km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.  相似文献   

3.
Information on the distribution of species richness, faunal density, biomass and estimated productivity of benthic invertebrates in Tasmanian estuaries was quantified at a variety of spatial and temporal scales to assess general hypothesis relating community metrics to such environmental variables as salinity, seagrass biomass and sediment particle size. An associated aim was to assess appropriate scales of investigation for soft-sediment biota distributed in estuaries, including whether patterns identified at individual sites, estuaries, tidal levels or times are likely to have more general relevance. Faunal biomass and productivity varied principally at between-estuary (10 to 1000 km) and replicate-sample (1 m) scales, indicating that these two community metrics were largely responding to estuary-wide effects, such as nutrient loading, and to microhabitat features, rather than to locality characteristics at intermediate scales such as salinity, anoxia or sediment particle size. By contrast, faunal density showed greater response to tidal height (1 to 100 m) and to factors distributed at the locality scale within estuary (10 km) than to factors between estuary. Both faunal density and species richness in estuaries declined over three- and fivefold ranges down the shore from high water mark to the shallow sublittoral, while estimated productivity and biomass showed highest overall levels at low water mark. The greatest component of variance in species richness was associated with tidal height, with variance then distributed approximately evenly between other spatial scales examined. At the low-tide and shallow subtidal levels, species richness, faunal biomass and estimated productivity were all highly correlated with salinity and biomass of macrophytes, whereas faunal density was highly correlated with biomass of macrophytes only. Relationships between environmental and biological variables examined were poorly defined at high tidal levels. Seasonal plus interannual variance was much lower than spatial variance—a clear indication that sampling effort in studies would generally be better directed across a range of localities than for a single locality to be repeatedly investigated over time.  相似文献   

4.
Calochortus (Liliaceae) displays high species richness, restriction of many individual taxa to narrow ranges, geographic coherence of individual clades, and parallel adaptive radiations in different regions. Here we test the first part of a hypothesis that all of these patterns may reflect gene flow at small geographic scales. We use amplified fragment length polymorphism variation to quantify the geographic scales of spatial genetic structure and apparent gene flow in Calochortus albus, a widespread member of the genus, at Henry Coe State Park in the Coast Ranges south of San Francisco Bay. Analyses of 254 mapped individuals spaced 0.001–14.4 km apart show a highly significant decline in genetic identity with ln distance, implying a root‐mean‐square distance of gene flow σ of 5–43 m. STRUCTURE analysis implies the existence of 2–4 clusters over the study area, with frequent reversals among clusters over short distances (<200 m) and a relatively high frequency of admixture within individuals at most sampling sites. While the intensity of spatial genetic structure in C. albus is weak, as measured by the Sp statistic, that appears to reflect low genetic identity of adjacent plants, which might reflect repeated colonizations at small spatial scales or density‐dependent mortality of individual genotypes by natural enemies. Small spatial scales of gene flow and spatial genetic structure should permit, under a variety of conditions, genetic differentiation within species at such scales, setting the stage ultimately for speciation and adaptive radiation as such scales as well.  相似文献   

5.
Aim Brown's principle predicts that a species will peak in density near its range centre, and decline gradually towards the margins of its geographical distribution. The decline is assumed to reflect a decrease in individual performance near range margins. I test this abundance–performance hypothesis by comparing patterns in density and size across the northern half of the geographical distribution of the marine patellogastropod Collisella scabra (Gould, 1846). Location Collisella scabra is a high intertidal patellogastropod species distributed along the Pacific coast of North America from Cape Mendocino (CA, USA) to southern Baja California (Mexico). I surveyed 11 research sites spanning c. 36–44° N. Methods In each of the 11 research sites I surveyed four distinct microhabitats, and compared spatial patterns in density and in the size of solitary limpets. Results Both density and size were highly variable across the species range. Density peaked near the northern range margin, and showed greater variance at small spatial scales (< 10 km) than at large scales (> 100 km). In contrast, large size occurred uniformly across the survey area, and size was strongly associated with microhabitat. Main conclusion Collisella scabra does not show spatial patterns of density or performance that are consistent with Brown's principle. The underlying assumptions of Brown's principle may conflict with specific characteristics of C. scabra's life history and/or patterns of environmental variation across its range. Because such conflicts may be common in a large number of marine and terrestrial species, the generality of Brown's principle is questioned.  相似文献   

6.
1. Forestry activities can greatly modify the structure and function of invertebrate communities in streams, but the ability to detect effects of forestry may depend on the spatial scale considered, the choice of response metric and the environmental context. In this study, a multi‐scale, multi‐metric approach was used to compare the usefulness of proximate and larger‐scale measurements of forestry activity for understanding the impacts of forestry on stream macrobenthos. 2. Site‐specific responses of macrobenthic communities to forestry activities measured at four spatial scales (sub‐basin and 8‐, 2‐ and 0.5‐km radii upstream of study sites) were examined for 90 riffle sites distributed among 22 tributary streams (Strahler order 1–5) of the Cascapedia River basin, Quebec, Canada. 3. Multiple regression models and canonical correspondence analysis were used to relate six biological metrics (taxonomic richness, numerical density, biomass density, normalised biomass spectrum, individual body mass and community structure) to variables quantifying logging 1–19 years prior to the study and road density. Environmental predictors (variables quantifying local habitat or landscape features) were included in all analyses to statistically account for environmental context and increase the likelihood of detecting potentially subtle forestry impacts. 4. Forestry activities measured at the larger (sub‐basin and 8 km) scales were linked to decline in taxonomic richness, increase in numerical and biomass densities and shift in size structure of benthic macroinvertebrates, indicating that analyses encompassing larger areas, up to the full basin, may allow for more sensitive detection of effects than those of more limited span. 5. These responses primarily reflected marked increases in the abundance of chironomids and decline in the number of trichopteran taxa with increasing areal coverage of recent (≤2–4 years) cuts, suggesting that larger, longer‐lived and possibly more specialised taxa were more vulnerable to forestry impacts than smaller, multivoltine, generalist invertebrates. After partialling out the influence of other variables, rapid decline in richness occurred even when <1% of the basin had been clear cut in the year prior to the study. 6. Effects of forestry were detected after statistically accounting for natural environmental variability, which may have otherwise concealed those effects. The combined use of multiple biological metrics, partialling out of environmental effects and measurement of impacts at multiple spatial scales may be a broadly applicable approach for enhancing sensitivity and facilitating interpretation in studies of anthropogenic effects on macroinvertebrate communities.  相似文献   

7.
Questions : How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location : Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods : Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non‐parametric analyses were used to analyse trends with time and differences among structural components and site types. Results : Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4–8 m). Few significant differences were found among site types. Conclusions : During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification.  相似文献   

8.
The only resident terrestrial herbivorous bird species in high-Arctic Svalbard, Norway is the endemic Svalbard rock ptarmigan (Lagopus muta hyperborea) of which little is known of its population dynamics. We assessed temporal and spatial variability of the pre-breeding population of Svalbard rock ptarmigan males using: 1) distance sampling to estimate density (2000–2009) and 2) occupancy modeling to determine the proportion of survey points being occupied in relation to a habitat index for ptarmigan habitat suitability (2005–2009). Data were collected using a point-transect sampling design. We split the analysis according to type of survey point (non-random, random, and survey points combined). Our estimated spring densities were low (1.3–3.1 territorial male/km2, non-random survey points, 2000–2009) with limited annual variability. The best models describing occupancy rates of territorial males at 2 different spatial scales (ptarmigan males observed ≤250 m and ≤450 m from the sampling point) were independent of spatial scales and the type of survey points. Occupancy dynamics were related to the habitat index whereas detection probability was year dependent. Extinction probability was negatively related to habitat quality (good habitats had lower extinction probability). We could not estimate the habitat effect on colonization precisely because initial occupancy rates were high at both spatial scales (estimated average initial occupancy at scale ≤250 m = 0.96; scale ≤450 m = 0.97). Colonization appeared to be positively related to the habitat index for the random survey points (including mainly marginal habitats), but the small sample size led to large uncertainty in the parameter estimate. Detection probabilities varied greatly between study years, thus demonstrating the importance of estimating detection probability annually. We recommend that future surveys are stratified with respect to habitat quality and to integrate the 2 methodologies in population monitoring of Svalbard rock ptarmigan. © 2011 The Wildlife Society.  相似文献   

9.
10.
11.
Environmental gradients and their influence on benthic community structure vary over different spatial scales; yet, few studies in the Arctic have attempted to study the influence of environmental gradients of differing spatial scales on megabenthic communities across continental-scales. The current project studied for the first time how megabenthic community structure is related to several environmental factors over 2000 km of the Canadian Arctic, from the Beaufort Sea to northern Baffin Bay. Faunal trawl samples were collected between 2007 and 2011 at 78 stations from 30 to 1000 m depth and patterns in biomass, density, richness, diversity, and taxonomic composition were examined in relation to indirect/spatial gradients (e.g., depth), direct gradients (e.g., bottom oceanographic variables), and resource gradients (e.g., food supply proxies). Six benthic community types were defined based on their biomass-based taxonomic composition. Their distribution was significantly, but moderately, associated with large-scale (100–1000 km) environmental gradients defined by depth, physical water properties (e.g., bottom salinity), and meso-scale (10–100 km) environmental gradients defined by substrate type (hard vs. soft) and sediment organic carbon content. We did not observe a strong decline of bulk biomass, density and richness with depth or a strong increase of those community characteristics with food supply proxies, contrary to our hypothesis. We discuss how local- to meso-scale environmental conditions, such as bottom current regimes and polynyas, sustain biomass-rich communities at specific locations in oligotrophic and in deep regions of the Canadian Arctic. This study demonstrates the value of considering the scales of variability of environmental gradients when interpreting their relevance in structuring of communities.  相似文献   

12.

Aim

Assessing the threat status of declining but yet widespread species poses a challenge to applied ecologists. Previous studies using a common metric to describe the spatial aggregation of occurrences across multiple scales, the fractal dimension Dij, have suggested that species’ distributional trends may be deduced from readily understandable spatial patterns: Expanding species are expected to show more aggregated spatial distributions (higher value of Dij) than declining species (lower value of Dij). Here, we revisited these predictions using a large‐scale empirical dataset on Finnish butterflies.

Location

Finland.

Methods

For each butterfly species (n = 97) and across three spatial scales (grid squares of 10 km, 50 km and 100 km), we calculated the area of occupancy (AOOi) as the sum of occupied grid squares. We employed values of AOOi to derive the Dij for each butterfly species. We then used these metrics to compare the changes in spatial patterns of distribution (?AOOi and ?Dij) between two time periods, 2000–2002 and 2009–2011.

Results

Majority of the studied butterfly species showed declining areas of occupancy (at the scale of 10 km, ?AOO10) and fractal dimensions (across the scales from 10 km to 100 km, ?D10–100) between the two study periods. In contrast to predictions, AOO10 and D10–100 showed negative impacts on the ?AOO10, an observation that may be explained by the high proportion of declining species in our data. Butterfly species with the greatest fractal dimensions at regional scales (D10–100) in the years 2000–2002 showed both positive long‐term distributional trends and most notable northern recent range limit shifts.

Main conclusions

Our results were in most cases congruent with the prediction of higher fractal dimension values in expanding compared to declining species. As a novel observation, many butterflies expanded northwards in spite of their occurrences getting simultaneously more scattered, particularly in southern Finland.
  相似文献   

13.
Striking genetic structure among marine populations at small spatial scales is becoming evident with extensive molecular studies. Such observations suggest isolation at small scales may play an important role in forming patterns of genetic diversity within species. Isolation‐by‐distance, isolation‐by‐environment and historical priority effects are umbrella terms for a suite of processes that underlie genetic structure, but their relative importance at different spatial and temporal scales remains elusive. Here, we use marine lakes in Indonesia to assess genetic structure and assess the relative roles of the processes in shaping genetic differentiation in populations of a bivalve mussel (Brachidontes sp.). Marine lakes are landlocked waterbodies of similar age (6,000–10,000 years), but with heterogeneous environments and varying degrees of connection to the sea. Using a population genomic approach (double‐digest restriction‐site‐associated DNA sequencing), we show strong genetic structuring across populations (range FST: 0.07–0.24) and find limited gene flow through admixture plots. At large spatial scales (>1,400 km), a clear isolation‐by‐distance pattern was detected. At smaller spatial scales (<200 km), this pattern is maintained, but accompanied by an association of genetic divergence with degree of connection. We hypothesize that (incomplete) dispersal barriers can cause initial isolation, allowing priority effects to give the numerical advantage necessary to initiate strong genetic structure. Priority effects may be strengthened by local adaptation, which the data may corroborate by showing a high correlation between mussel genotypes and temperature. Our study indicates an often‐neglected role of (evolution‐mediated) priority effects in shaping population divergence.  相似文献   

14.
Landscape composition and physiognomy affect community structure and species distribution across space and time. The pine processionary moth (PPM) (Thaumetopoea pityocampa Den. & Schiff., Lepidoptera, Notodontidae) is a common pine defoliator throughout southern Europe and Mediterranean countries. We surveyed the spatiotemporal distribution of the PPM in a pine plantation forest in southwestern France and used the density of the winter nests as a proxy for population density. The study spanned 4 years (2005–2008) and showed a high temporal variability in nest density. We found a strong edge effect with nest densities at stand edges more than twice as large as within-stand densities. At the landscape scale, the spatial distribution of the moth exhibited a significant spatial autocorrelation in 3 out of 4 years of our study. The spatial scales of the autocorrelation ranged from ca. 2 km to more than 22 km. We found a positive correlation between spatial distributions corresponding to certain sampling years, but the relationship was not systematic. Landscape configuration appeared to be an important driver of the PPM spatial pattern. Bivariate Moran’s I correlograms showed that patch richness density as well as the percentage of local landscape covered by various land uses were correlated with population density. The study showed that accounting for landscape characteristics may be important in order to understand forest insect pest distribution, even in cases where the host species is abundant and homogeneously distributed throughout the study area, e.g., pure plantation forests.  相似文献   

15.
Identifying factors that cause genetic differentiation in plant populations and the spatial scale at which genetic structuring can be detected will help to understand plant population dynamics and identify conservation units. In this study, we determined the genetic structure and diversity of Pterocarpus officinalis, a widespread tropical wetland tree, at three spatial scales: (1) drainage basin “watershed” (<10 km), (2) within Puerto Rico (<100 km), and (3) Caribbean-wide (>1000 km) using AFLP. At all three spatial scales, most of the genetic variation occurred within populations, but as the spatial scale increased from the watershed to the Caribbean region, there was an increase in the among population variation (ΦST=0.19 to ΦST=0.53). At the watershed scale, there was no significant differentiation (P=0.77) among populations in the different watersheds, although there was some evidence that montane and coastal populations differed (P<0.01). At the island scale, there was significant differentiation (P<0.001) among four populations in Puerto Rico. At the regional scale (>1000 km), we found significant differentiation (P<0.001) between island and continental populations in the Caribbean region, which we attributed to factors associated with the colonization history of P. officinalis in the Neotropics. Given that genetic structure can occur from local to regional spatial scales, it is critical that conservation recommendations be based on genetic information collected at the appropriate spatial scale.  相似文献   

16.
Abstract. 1. The 1980 eruption of Mount St Helens (Washington, U.S.A.) created a 60‐km2 region of primary successional habitat. Since colonising in 1981, the spatial spread of the legume Lupinus lepidus at Mount St Helens, Washington, U.S.A., has afforded intriguing opportunities to study the effect of trophic dynamics on primary succession. 2. Insect herbivory on this lupine has exhibited striking spatial structure for over a decade, with inverse density‐dependent damage patterns occurring over both small (10–100 m) and large (1–10 km) spatial scales. 3. Hypothesising that lupine nutritional chemistry might underlie the spatial patterns in herbivory, the distribution of elemental macronutrients (nitrogen, phosphorus) across the landscape was characterised. 4. Samples of soil and lupine tissue (roots and leaves) were collected from sites along both local and regional gradients in lupine density. On both large and small spatial scales, lupine leaves from low‐density conditions were significantly more nutrient rich. 5. In addition, in a laboratory growth study native lepidopteran herbivores that specialise on lupines (Gelechiidae: Filatima sp.) performed better when fed leaves from low‐density, high‐nutrient lupines than on diets of low‐nutrient lupine leaves from high‐density areas a few metres away. 6. These data suggest that spatial heterogeneity in lupine nutrient chemistry may underlie the remarkable herbivory gradients witnessed at Mount St Helens.  相似文献   

17.
1. An experimental field study examined the aggregation of stream macroinvertebrates associated with leaf packs over different spatial scales (several metres–km) (extent), at different patch sizes (grain) and temporal scales (2 and 4 weeks). 2. Standardized leaf packs were constructed and set in eighteen blocks of nine equally spaced packs in glide areas over a 2 km stretch of a wooded stream. The distribution of macroinvertebrates colonizing the artificial leaf packs was investigated to examine the extent of both intraspecific and interspecific aggregation across leaf packs. 3. All major colonizing taxa were intraspecifically aggregated across the leaf packs. Aggregation decreased with increasing patch size (grain) (from pack to block), and also decreased with decreasing spatial extent (from 2 km stretch to within-block scale) with patch size held constant. Interspecific associations among all major taxa were not common on most occasions at the short temporal scale, although the proportion of significant associations tended to increase somewhat over time and with spatial scale, but did not exceed 42% of all possible associations. The vast majority of significant associations were positive rather than negative. 4. The influence of heterogeneity in a number of environmental variables measured for each leaf pack (accumulated detritus and sediment, leaf mass, flow and depth) on the distribution of invertebrates was considered, but this could only partially explain the variation in macroinvertebrate abundance across leaf packs. 5. The roles of intrinsic aggregation and stochastic processes were examined as alternative explanations for the distribution patterns observed. It is apparent from this study that intrinsic aggregation, in concert with resource partitioning, influences the community structure of stream macroinvertebrates associated with leaf packs. These findings may also have implications for the distribution of taxa in the benthos as a whole.  相似文献   

18.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

19.
Capsule The breeding Woodcock population in Britain in 2013 was estimated at 55?241 males (95% CL: 41?806–69?004), suggesting a large-scale decline that is supported by 2 additional sources of data.

Aims To provide an updated estimate of the size of Britain's breeding Woodcock population, measure recent trends and identify spatial patterns of change.

Methods Displaying male Woodcock were surveyed at a stratified sample of 834 randomly selected sites. Population estimates were compared with a baseline survey conducted in 2003 and the trend with data from annual Woodcock counts (2003–13) and Bird Atlas 200711.

Results Woodcock were estimated to be present at 22% of 1?×?1?km squares containing ≥10?ha of woodland, compared to 35% in 2003. The British population estimate fell by 29% between 2003 and 2013. The Atlas suggests that presence at the 10?×?10?km scale has declined by 56% between 1970 and 2010. Both data sources suggest regional variation in the rate of decline, with losses greatest in the West and South.

Conclusion The Woodcock's population size and breeding range appear to be declining severely across Britain. Regional variation in the rate of decline might be explained by the distribution of large continuous woodlands.  相似文献   

20.
Understanding the scale of dispersal is an important consideration in the conservation and management of many species. However, in species in which the high‐dispersal stage is characterized by tiny gametes or offspring, it may be difficult to estimate dispersal directly. This is the case for many marine species, whose pelagic larvae are dispersed by ocean currents by several days or weeks before beginning a benthic, more sedentary, adult stage. As consequence of the high‐dispersal larval stage, many marine species have low genetic structure on large spatial scales (Waples 1998 ; Hellberg 2007 ). Despite the high capacity for dispersal, some tagging studies have found that a surprising number of larvae recruit into the population they were released from (self‐recruitment). However, estimates of self‐recruitment are not informative about mean dispersal between subpopulations. To what extent are limited dispersal estimates from tagging studies compatible with high potential for dispersal and low genetic structure? In this issue, a study on five species of coral reef fish used isolation by distance (IBD) between individuals to estimate mean dispersal distances (Puebla et al. 2012 ). They found that mean dispersal was unexpectedly small (<50 km), given relatively low IBD slopes and long pelagic durations. This study demonstrates how low genetic structure is compatible with limited dispersal in marine species. A comprehensive understanding of dispersal in marine species will involve integrating methods that estimate dispersal over different spatial and temporal scales. Genomic data may increase power to resolve these issues but must be applied carefully to this question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号