首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aim We evaluate the stability of the range limits of the rocky intertidal limpet, Lottia gigantea, over the last c. 140 years, test the validity of the abundant centre hypothesis, and test indirectly the roles played by recruitment limitation and habitat availability in controlling the range limits. Because this species is size‐selectively harvested, our results also allow us to assess conservation implications. Location The Pacific coast of North America, from northern California to southern Baja California (41.74° N–23.37° N), encompassing the entire range of L. gigantea. Methods The historical and modern distributions of L. gigantea were established using museum data and field observations. Overall and juvenile abundances of local populations were estimated at 25 field sites. The spatial distribution of abundance was evaluated statistically against the predictions of five hypothetical models. The availability of habitat was estimated by measuring the percentage of unavailable sandy beach within cumulative bins of coast across the range of L. gigantea. Results The northern limit of L. gigantea has contracted by c. 2.4° of latitude over recent decades (after 1963), while the southern limit has remained stable. The highest abundances of L. gigantea occur in the centre of its geographic range. Habitat availability is ample in the centre and northern portions of its range, but is generally lacking in the southern range. The northern range is only sparsely populated by adults, with sharp declines occurring north of Monterey Bay (36.80° N). In the southern range, abundance drops precipitously south of Punta Eugenia (27.82° N), coinciding with the region where suitable habitat becomes sparse. Main conclusions Support for the abundant centre hypothesis was found for L. gigantea. Northern populations are characterized as being recruitment‐limited, demographically unstable and prone to local extinctions, while southern populations are suggested to be habitat‐limited. The abundant centre is suggested to result partly from a combination of the indirect effects of human harvesting, generating denser populations of smaller individuals, and larval recruitment from well‐protected offshore rocky islands primarily found in the range centre.  相似文献   

2.
Sea stars are invertebrates that play relevant roles in rocky and coral reefs: they occupy different levels in food webs and may act as top predators. There are numerous studies on taxonomy and biogeography of the class in the eastern tropical Pacific, but information about the attributes and composition of its assemblages is scant. The objectives of this study were the examination and comparison of asteroid community structure from four regions of the Gulf of California, Mexico, characterized by the presence of rocky reefs, and the search for possible associations between pairs of species. In August 2004 we visited four locations in the western gulf: Bahia de Los Angeles (29 degrees N), Santa Rosalia (27 degrees N), Loreto (26 degrees N) and La Paz (24 degrees N), and censuses sea stars using 50 m2 belt transects (N=93). Abundance and species richness was estimated, as well as diversity (H'), evenness (J') and taxonomic distinctness (delta*); then, all variables were compared among regions with analysis of variance. In addition, an ordination analysis was run looking for groups of locations with similar faunistic composition. Our results showed that Loreto Bay had the highest richness and abundance of asteroids, probably because it presents a large number of habitats and multiple food sources; these conditions seem to favor the occurrence of rare species and of detritivores. However, there were no significant interregional differences among ecological indices, nor we detected groups of locations singled out because of its species composition. Thus, community structure of sea stars in rocky areas of the Gulf of California is quite homogeneous and do not change with latitude. This is a consequence of the fact that all regions under analysis had the species Phataria unifascialis and Pharia pyramidatus as dominant in number. There were significant positive associations between three pairs of species: apparently competition is not particularly relevant to control sea star community structure in the Gulf.  相似文献   

3.
Climatic–oceanographic stress and coral reef diversity were mapped in the western Indian Ocean (WIO) in order to determine if there were associations between high diversity coral reefs and regions with low‐to‐moderate climate stress. A multivariate stress model developed to estimate environmental exposure to stress, an empirical index of the coral community's susceptibility to stress, and field data on numbers of fish and corals taxa from 197 WIO sites were overlain to evaluate these associations. Exposure to stress was modeled from satellite data based on nine geophysical–biological oceanographic characteristics known to influence coral bleaching (i.e. temperature, light, and current variables). The environmental stress model and the coral community's susceptibility index were moderately correlated (r=?0.51) with southern and eastern parts of the WIO identified as areas with low environmental stress and coral communities with greater dominance of bleaching stress‐sensitive taxa. Numbers of coral and fish taxa were positive and moderately correlated (r=0.47) but high diversity regions for fish were in the north and west while diversity was highest for corals in central regions from Tanzania to northwestern Madagascar. Combining three and four of these variables into composite maps identified a region from southern Kenya to northern Mozambique across to northern–eastern Madagascar and the Mascarene Islands and the Mozambique–South Africa border as areas where low‐moderate environmental exposure overlaps with moderate‐high taxonomic diversity. In these areas management efforts aimed at maintaining high‐diversity and intact ecosystems are considered least likely to be undermined by climate disturbances in the near term. Reducing additional human disturbances, such as fishing and pollution, in these areas is expected to improve the chances for their persistence. These reefs are considered a high priority for increased local, national, and international management efforts aimed at establishing coral reef refugia for climate change impacts.  相似文献   

4.
An analysis was conducted of the community structure variability of demersal fish larvae and its relationship with environmental forcing on the west coast of the Baja California Peninsula (25–31°N). The information comes from two data sets of oceanographic cruises in 1997–2000 and 2006–2010. From a total of 190 identified taxa, a high number of species (71) was shared throughout the peninsula. The spatiotemporal contrast in the community structure suggests the separation of two groups (northern and southern) whose boundary is located around Punta Eugenia. The northern group showed an alternate dominance of species with a subarctic-transitional faunistic affinity during the winter and spring and species of a subtropical affinity during summer–autumn. In contrast, the dominant taxa in the southern group have a tropical–subtropical affinity throughout the year, although some taxa of subarctic-transitional affinity also occur during winter–spring. In the spatiotemporal scale, these results suggest that the major cause that modulates the extension and structure of the assemblages is the seasonal oceanic dynamics. Moreover, the intensity of warming or cooling events (El Niño and La Niña) influences the structure of the community on an interannual scale by displacing the zonal boundaries of the groups’ distribution.  相似文献   

5.
The present study is the first attempt to describe meso-scale patterns in the species richness of polychaetes along the Gulf of California, which stretches from about 23°N to 31°N. We examine herein the spatial changes in species distribution and explore the overlapping of species’ ranges towards the centre of the Gulf, to test whether the mid-domain effect (MDE) could explain an expected mid-domain peak in species richness. The faunal composition and the latitudinal range of 244 species of polychaetes recorded along the continental shelf of the Gulf of California were analysed in latitude bands of 1°. The species composition changes around the Gulf’s archipelago (~29°N), and the highest values of species richness are found at the 25° (197 species) and 26° (193 species) of latitude. Although the species richness pattern could be described by a parabolic shape, the regional trend was not strongly consistent with the peak of diversity at 27°N (176–191 species) predicted by the mid-domain effect: the random sorting of species’ ranges within spatial domain does not explain satisfactorily the geographical patterns of diversity. Nevertheless, a partial contribution of MDE to these natural patterns of diversity could be detected, and the increase in species richness towards middle latitudes was basically determined by species with distribution ranges larger than 6°. The low level of significance between the empirical species richness pattern and the mid-domain model prediction for polychaetes in the Gulf does not restrict their use as a model for exploring the randomness of the diversity patterns.  相似文献   

6.

Background

Ligia isopods are widely distributed in the Pacific rocky intertidal shores from central California to central Mexico, including the Gulf of California. Yet, their biological characteristics restrict them to complete their life cycles in a very narrow range of the rocky intertidal supralittoral. Herein, we examine phylogeographic patterns of Ligia isopods from 122 localities between central California and central Mexico. We expect to find high levels of allopatric diversity. In addition, we expect the phylogeographic patterns to show signatures of past vicariant events that occurred in this geologically dynamic region.

Methodology/Principal Findings

We sequenced two mitochondrial genes (Cytochrome Oxidase I and 16S ribosomal DNA). We conducted Maximum Likelihood and Bayesian phylogenetic analyses. We found many divergent clades that, in general, group according to geography. Some of the most striking features of the Ligia phylogeographic pattern include: (1) deep mid-peninsular phylogeographic breaks on the Pacific and Gulf sides of Baja peninsula; (2) within the Gulf lineages, the northern peninsula is most closely related to the northern mainland, while the southern peninsula is most closely related to the central-southern mainland; and, (3) the southernmost portion of the peninsula (Cape Region) is most closely related to the southernmost portion of mainland.

Conclusions/Significance

Our results shed light on the phylogenetic relationships of Ligia populations in the study area. This study probably represents the finest-scale phylogeographic examination for any organism to date in this region. Presence of highly divergent lineages suggests multiple Ligia species exist in this region. The phylogeographic patterns of Ligia in the Gulf of California and Baja peninsula are incongruent with a widely accepted vicariant scenario among phylogeographers, but consistent with aspects of alternative geological hypotheses and phylo- and biogeographic patterns of several other taxa. Our findings contribute to the ongoing debate regarding the geological origin of this important biogeographic region.  相似文献   

7.
Kelp Bass (Paralabrax clathratus) and California Sheephead (Semicossyphus pulcher) are economically and ecologically valuable rocky reef fishes in southern California, making them likely indicator species for evaluating resource management actions. Multiple spatial datasets, aerial and satellite photography, underwater observations and expert judgment were used to produce a comprehensive map of nearshore natural rocky reef habitat for the Santa Monica Bay region (California, USA). It was then used to examine the relative contribution of individual reefs to a regional estimate of abundance and reproductive potential of the focal species. For the reefs surveyed for fishes (i.e. 18 out of the 22 in the region, comprising 82% the natural rocky reef habitat <30 m depth, with a total area of 1850 ha), total abundance and annual egg production of California Sheephead were 451 thousand fish (95% CI: 369 to 533 thousand) and 203 billion eggs (95% CI: 135 to 272 billion). For Kelp Bass, estimates were 805 thousand fish (95% CI: 669 to 941 thousand) and 512 billion eggs (95% CI: 414 to 610 billion). Size structure and reef area were key factors in reef-specific contributions to the regional egg production. The size structures of both species illustrated impacts from fishing, and results demonstrate the potential that relatively small increases in the proportion of large females on larger reefs could have on regional egg production. For California Sheephead, a substantial proportion of the regional egg production estimate (>30%) was produced from a relatively small proportion of the regional reef area (c. 10%). Natural nearshore rocky reefs make up only 11% of the area in the newly designated MPAs in this region, but results provide some optimism that regional fisheries could benefit through an increase in overall reproductive output, if adequate increases in size structure of targeted species are realized.  相似文献   

8.
Length–weight relationships of 33 cryptic reef fishes from the southwestern Gulf of California were estimated. The most common families were Gobiidae (seven species), Labrisomidae (four), Pomacentridae (three), and Tripterygiidae (three). These are the first length–weight parameters reported for 32 of these species. Specimens were sampled during a comparative ecological study of community structure of fish assemblages associated with coral heads, rocky walls, and artificial reefs in Bahía de La Paz, Baja California Sur. The b values varied between 2.63 and 3.61. New maximum length records for five of the species were established in the study.  相似文献   

9.
In November 2020, we observed several individuals and collected one juvenile of an unidentified anthiadine fish (Serranidae) between depths of 250 and 307 m near vertical walls of rocky reefs in the northern Red Sea. Further morphological and molecular analyses revealed that the collected specimen matches Sacura boulengeri, a species previously reported only from the Gulf of Oman to India.  相似文献   

10.
Fish larvae assemblages in the Gulf of California   总被引:1,自引:0,他引:1  
The distributional diversity and assemblages of fish larvae in the Gulf of California indicated two main seasonal stages and two transitional periods: in winter, the tropical water mass is confined to the south‐east portion of the mouth of the Gulf and larval fish assemblages are dominated by subtropical and temperate‐subarctic species; in summer; tropical water invades the Gulf and assemblages are dominated by tropical species. Both seasonal stages are separated by transitional periods coinciding with strong latitudinal temperature gradients. During the autumn and spring transitional periods, the Gulf of California splits into three regions: a northern region where temperate and subarctic species spawn from autumn to spring, a southern region dominated by tropical and subtropical species year round and a central region where tropical and temperate assemblages merge. Seasonal changes in the location of the regions, as well as the borders between them, show expansion and contraction of the northern and southern faunas related to the general oceanic circulation patterns during the year.  相似文献   

11.

Competition is a fundamental process structuring ecological communities. On coral reefs, space is a highly contested resource and the outcomes of spatial competition can dictate community composition. In the Caribbean, reefs are increasingly dominated by non-scleractinian species like sponges, gorgonians, and zoanthids, yet there is a paucity of data on interactions between these increasingly common organisms and historically dominant corals. Here, we investigated interactions among these groups of sessile benthic invertebrates to better understand the role of spatial competition in shaping benthic communities on Caribbean reefs. We coupled surveys of competitive interactions on the reef with a common garden competition experiment to determine the frequency and outcome of interference competition among eight focal species. We found that competitive interactions were pervasive on Florida reefs, with 60% of sessile benthic invertebrates interacting with at least one other invertebrate. Increasingly common non-scleractinian species were some of the most abundant taxa and consistently outcompeted the contemporarily common scleractinian species Porites porites and Siderastrea siderea. The encrusting gorgonian, Erythropodium caribaeorum, was the most aggressive species, reducing the live area of its competitors on average 42% ± 7.04 (SE) over the course of 5 months. Surprisingly, the most aggressive species declined in size when competing, while some less aggressive species were able to increase or maintain area, suggesting a trade-off between aggressiveness and growth. Our findings suggest that competition among sessile invertebrates is likely to remain an important process in structuring coral reefs, but that the optimal strategies for maintaining space on the benthos may change. Importantly, many non-scleractinian species that now dominate reefs appear to be superior competitors, potentially increasing the stress on corals on contemporary reefs.

  相似文献   

12.
The spatial distribution of 50 ornamental fish species from shallow water habitats on coral reefs were investigated using visual census techniques, between latitudes 11−29°N in the Red Sea, in Jordan, Egypt, Saudi Arabia, and Yemen, and in the adjacent Gulf of Aden in Djibouti. One hundred eighteen transects (each 100×5 m) were examined in 29 sites (3−8 sites per country). A total of 522,523 fish individuals were counted during this survey, with mean abundance of 4428.2 ± 87.26 individual per 500 m² transect. In terms of relative abundance (RA), the most abundant species were Blue green damselfish, Chromis viridis (RA=54.4%),followed bySea goldie, Pseudanthias squamipinnis (RA= 34.7), Whitetail dascyllus, Dascyllus aruanus (RA= 2.6%), Marginate dascyllus, Dascyllus marginatus (RA= 2.0),Red Sea eightline flasher Paracheilinus octotaenia (RA=1.0),andKlunzinger’s wrasse, Thalassoma rueppellii (0.7%). The highest number of species (S) per 500 m² transect was found on reefs at the latitude 20° in Saudi Arabia (S=21.8), and the lowest number of species was found at the latitude 15° in Djibouti (S=11.11). The highest mean abundance (8565.8) was found on reefs at latitude 20° in Saudi Arabia and the lowest mean abundance (230) was found on reefs at latitude 22°, also in Saudi Arabia. Whereas, the highest Shannon-Wiener Diversity Index was found in reefs at the latitude 22° (H`=2.4) and the lowest was found in reefs at the latitude 20° (H`=0.6). This study revealed marked differences in the structure of ornamental fish assemblages with latitudinal distribution. The data support the presence of two major biogeographic groups of fishes in the Red Sea and Gulf of Aden: the southern Red Sea and Gulf of Aden group and the group in the northern and central Red Sea. Strong correlations were found between live coral cover and the number of fish species, abundance and Shannon-Wiener Diversity indices, and the strength of these correlations varied among the reefs. A conclusion was done that environmental differences among the reefs and the habitats investigated were important components of abundance variations and species diversity of ornamental fish along latitudinal gradients in the Red Sea and the Gulf of Aden.  相似文献   

13.
Skates (Rajiformes: Rajoidei) are common mesopredators in marine benthic communities. The spatial associations of individual species and the structure of assemblages are of considerable importance for effective monitoring and management of exploited skate populations. This study investigated the spatial associations of eastern North Pacific (ENP) skates in continental shelf and upper continental slope waters of two regions: central California and the western Gulf of Alaska. Long-term survey data were analyzed using GIS/spatial analysis techniques and regression models to determine distribution (by depth, temperature, and latitude/longitude) and relative abundance of the dominant species in each region. Submersible video data were incorporated for California to facilitate habitat association analysis. We addressed three main questions: 1) Are there regions of differential importance to skates?, 2) Are ENP skate assemblages spatially segregated?, and 3) When skates co-occur, do they differ in size? Skate populations were highly clustered in both regions, on scales of 10s of kilometers; however, high-density regions (i.e., hot spots) were segregated among species. Skate densities and frequencies of occurrence were substantially lower in Alaska as compared to California. Although skates are generally found on soft sediment habitats, Raja rhina exhibited the strongest association with mixed substrates, and R. stellulata catches were greatest on rocky reefs. Size segregation was evident in regions where species overlapped substantially in geographic and depth distribution (e.g., R. rhina and Bathyraja kincaidii off California; B. aleutica and B. interrupta in the Gulf of Alaska). Spatial niche differentiation in skates appears to be more pronounced than previously reported.  相似文献   

14.
  • 1 We summarize fin whale Balaenoptera physalus catch statistics, sighting data, mark recoveries and acoustics data. The annual cycle of most populations of fin whales had been thought to entail regular migrations between high‐latitude summer feeding grounds and lower‐latitude winter grounds. Here we present evidence of more complex and varied movement patterns.
  • 2 During summer, fin whales range from the Chukchi Sea south to 35 °N on the Sanriku coast of Honshu, to the Subarctic Boundary (ca. 42 °N) in the western and central Pacific, and to 32 °N off the coast of California. Catches show concentrations in seven areas which we refer to as ‘grounds’, representing productive feeding areas.
  • 3 During winter months, whales have been documented over a wide area from 60 °N south to 23 °N. Coastal whalers took them regularly in all winter months around Korea and Japan and they have been seen regularly in winter off southern California and northern Baja California. There are also numerous fin whale sightings and acoustic detections north of 40 °N during winter months. Calves are born during the winter, but there is little evidence for distinct calving areas.
  • 4 Whales implanted with Discovery‐type marks were killed in whaling operations, and location data from 198 marked whales demonstrate local site fidelity, consistent movements within and between the main summer grounds and long migrations from low‐latitude winter grounds to high‐latitude summer grounds.
  • 5 The distributional data agree with immunogenetic and marking findings which suggest that the migratory population segregates into at least two demes with separate winter mating grounds: a western ground off the coast of Asia and an eastern one off the American coast. Members of the two demes probably mingle in the Bering Sea/Aleutian Islands area.
  • 6 Prior research had suggested that there were at least two non‐migratory stocks of fin whale: one in the East China Sea and another in the Gulf of California. There is equivocal evidence for the existence of additional non‐migratory groups in the Sanriku‐Hokkaido area off Japan and possibly the northern Sea of Japan, but this is based on small sample sizes.
  相似文献   

15.
A long-standing issue in marine biology is identifying spatial scales at which populations of sessile adults are connected by planktonic offspring. We examined the genetic continuity of the acorn barnacle Balanus glandula, an abundant member of rocky intertidal communities of the northeastern Pacific Ocean, and compared these genetic patterns to the nearshore oceanography described by trajectories of surface drifters. Consistent with its broad dispersal potential, barnacle populations are genetically similar at both mitochondrial (cytochrome oxidase I) and nuclear (elongation factor 1-alpha) loci across broad swaths of the species' range. In central California, however, there is a striking genetic cline across 475 km of coastline between northern and southern populations. These patterns indicate that gene flow within central California is far more restricted spatially than among other populations. Possible reasons for the steep cline include the slow secondary introgression of historically separated populations, a balance between diversifying selection and dispersal, or some mix of both. Geographic trajectories of oceanic drifters closely parallel geographical patterns of gene flow. Drifters placed to the north (Oregon; approximately 44 degrees N) and south (Santa Barbara, California; approximately 34 degrees N) of the cline disperse hundreds of kilometers within 40 days, yet over the long-term their trajectories never overlapped. The lack of communication between waters originating in Oregon and southern California probably helps to maintain strong genetic differentiation between these regions. More broadly, the geographical variation in gene flow implies that focusing on species-level averages of gene flow can mask biologically important variance within species which reflects local environmental conditions and historical events.  相似文献   

16.
Species richness is one of the best indicators of biodiversity. However, there are few investigations on concordance of diversity patterns and environmental settings for marine regions. The objectives of this study were to correlate species richness of shallow water (< 200 m deep) sea stars with key oceanographic factors in the Gulf of California, México, and to predict species richness of Asteroidea using multiple regressions. In these analyses the Gulf was divided into nine sections of one degree in latitude (from 23-31 degrees N), at each section we recorded: continental shelf area (at 100 and 200 m depth), temperature mean and range at three depth levels (0, 60 and 120 m), thermocline depth, surface nutrient concentrations (nitrates, phosphates and silicates), surface photosynthetic pigment concentration, and integrated productivity. Sea star species richness at each latitudinal section was estimated from literature data, new collections and museum records. Species were assigned to one of the following feeding guilds: predators of small mobile invertebrates (I), detritivores (D), predators of colonial organisms (C), generalist carnivores (G), and planktivores (P). There are 47 shallow water asteroid species in the Gulf of California (16 I, 15 D, eight C, six G, one P and one not assigned). Total species richness and guild species richness showed strong latitudinal attenuation patterns and were higher in the southernmost Gulf, an area characterized by a narrow shelf, high temperature, and low nutrient concentrations. Species diversity for each guild was correlated to a set of oceanographic parameters: temperature, nitrate concentration, and integrated productivity were linked to richness in must cases. We detected that nutrients and surface pigments always presented negative relationships with species richness, indicating that productive environments limit asteroid diversity in the study area. Finally, the postulated regression models to estimate species richness from oceanographic data were significant and highly precise. We conclude that species richness of Asteroidea in the Gulf of California is related to oceanographic conditions and can be estimated from regional oceanographic information.  相似文献   

17.
18.
This paper deals with the history and results of the studies of reefs and coral communities of the Gulf of Tonkin based on published and unpublished materials, including the author's. The state of the art in the study of reef-building scleractinian corals and reefs of this region is reported. The peculiar nature of the reefs studied is caused by the monsoon climate in the region and river runoff waters cooled to 16–18°C, silted to 100 g/m2 per day, and freshened to 28‰ in the wintertime, i.e., conditions far from optimum for reef formation. The silting and eutrophication of the gulf waters resulted in a change in the composition and structure of the coral reef communities via the reduction or elimination of certain coral species. Instead of acroporids, typical for the majority of other reefs, reef communities of the Gulf of Tonkin are dominated by poritids and faviids, which form the framework of the reefs. These peculiarities make the reefs of the Gulf of Tonkin really unique.  相似文献   

19.
Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should have affected multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja Peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. For some fish species, the signal of this vicariance in mtDNA has been eroded by gene flow and is not evident with classic, equilibrium measures of population structure. Yet, significant divisions are apparent in coalescent analyses that jointly estimate divergence with gene flow. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limit gene exchange between biogeographic regions and help maintain evidence of past vicariance.  相似文献   

20.
One of the most critical challenges facing ecologists today is to understand the changing geographic distribution of species in response to current and predicted global warming. Coastal Western Australia is a natural laboratory in which to assess the effect of climate change on reef coral communities over a temporal scale unavailable to studies conducted solely on modern communities. Reef corals composing Late Pleistocene reef assemblages exposed at five distinct localities along the west Australian coast were censused and the results compared with coral occurrence data published for the modern reefs offshore of each locality. The resulting comparative data set comprises modern and Late Pleistocene reef coral communities occurring over approximately 12° of latitude. For the modern reefs this gradient includes the zone of overlap between the Dampierian and Flindersian Provinces. Modern reef coral communities show a pronounced gradient in coral composition over the latitudinal range encompassed by the study, while the gradient in community composition is not as strong for Pleistocene communities. Tropical‐adapted taxa contracted their ranges north since Late Pleistocene time, emplacing two biogeographic provinces in a region in which a single province had existed previously. Beta diversity values for adjacent communities also reflect this change. Modern reefs show a distinct peak in beta diversity in the middle of the region; the peak is not matched by Pleistocene reefs. Beta diversity is correlated with distance only for comparisons between modern reefs in the north and the fossil assemblages, further supporting change in distribution of the biogeographic provinces in the study area. Coral taxa present in modern communities clearly expanded and contracted their geographic ranges in response to climate change. Those taxa that distinguish Pleistocene from modern reefs are predicted to migrate south in response to future climate change, and potentially persist in ‘temperature refugia’ as tropical reef communities farther north decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号