首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.  相似文献   

2.
Chojnowski JL  Kimball RT  Braun EL 《Gene》2008,410(1):89-96
Neoaves is the most diverse major avian clade, containing ~95% of avian species, and it underwent an ancient but rapid diversification that has made resolution of relationships at the base of the clade difficult. In fact, Neoaves has been suggested to be a "hard" polytomy that cannot be resolved with any amount of data. However, this conclusion was based on slowly evolving coding sequences and ribosomal RNAs and some recent studies using more rapidly evolving intron sequences have suggested some resolution at the base of Neoaves. To further examine the utility of introns and exons for phylogenetics, we sequenced parts of two unlinked clathrin heavy chain genes (CLTC and CLTCL1). Comparisons of phylogenetic trees based upon individual partitions (i.e. introns and exons), the combined dataset, and published phylogenies using Robinson-Foulds distances (a metric of topological differences) revealed more similarity than expected by chance, suggesting there is structure at the base of Neoaves. We found that introns provided more informative sites, were subject to less homoplasy, and provided better support for well-accepted clades, suggesting that intron evolution is better suited to determining closely-spaced branching events like the base of Neoaves. Furthermore, phylogenetic power analyses indicated that existing molecular datasets for birds are unlikely to provide sufficient phylogenetic information to resolve relationships at the base of Neoaves, especially when comprised of exon or other slowly evolving regions. Although relationships among the orders in Neoaves cannot be definitively established using available data, the base of Neoaves does not appear to represent a hard polytomy. Our analyses suggest that large intron datasets have the best potential to resolve relationships among avian orders and indicate that the utility of intron data for other phylogenetic questions should be examined.  相似文献   

3.
More taxa,more characters: the hoatzin problem is still unresolved   总被引:5,自引:0,他引:5  
The apparently rapid and ancient diversification of many avian orders complicates the resolution of their relationships using molecular data. Recent studies based on complete mitochondrial DNA (mtDNA) sequences or shorter lengths of nuclear sequence have helped corroborate the basic structure of the avian tree (e.g., a basal split between Paleognathae and Neognathae) but have made relatively little progress in resolving relationships among the many orders within Neoaves. We explored the potential of a moderately sized mtDNA data set ( approximately 5000 bp for each of 41 taxa), supplemented with data from a nuclear intron ( approximately 700 bp per taxon), to resolve relationships among avian orders. Our sampling of taxa addresses two issues: (1). the sister relationship and monophyly, respectively, of Anseriformes and Galliformes and (2). relationships of the enigmatic hoatzin Opisthocomus hoazin. Our analyses support a basal split between Galloanserae and Neoaves within Neognathae and monophyly of both Galliformes and Anseriformes. Within Galliformes, megapodes and then cracids branch basally. Within Anseriformes, mitochondrial data support a screamer (Anhimidae) plus magpie goose (Anseranatidae) clade. This result, however, may be an artifact of divergent base composition in one of the two anatids we sampled. With deletion of the latter taxon, Anseranas is sister to anatids as in traditional arrangements and recent morphological studies. Although our data provide limited resolution of relationships within Neoaves, we find no support for a sister relationship between either cuckoos (Cuculiformes) or turacos (Musophagiformes) and hoatzin. Both mitochondrial and nuclear data are consistent with a relationship between hoatzin and doves (Columbiformes), although this result is weakly supported. We also show that mtDNA sequences reported in another recent study included pervasive errors that biased the analysis towards finding a sister relationship between hoatzin and turacos.  相似文献   

4.
The vast majority of extant birds possess highly differentiated Z and W sex chromosomes. Nucleotide sequence data from gametologs (homologs on opposite sex chromosomes) suggest that this divergence occurred throughout early bird evolution via stepwise cessation of recombination between identical sex chromosomal regions. Here, we investigated avian sex chromosome differentiation from a novel perspective, using retroposon insertions and random insertions/deletions for the reconstruction of gametologous gene trees. Our data confirm that the CHD1Z/CHD1W genes differentiated in the ancestor of the neognaths, whereas the NIPBLZ/NIPBLW genes diverged in the neoavian ancestor and independently within Galloanserae. The divergence of the ATP5A1Z/ATP5A1W genes in galloanserans occurred independently in the chicken, the screamer, and the ancestor of duck-related birds. In Neoaves, this gene pair differentiated in each of the six sampled representatives, respectively. Additionally, three of our investigated loci can be utilized as universal, easy-to-use independent tools for molecular sexing of Neoaves or Neognathae.  相似文献   

5.
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds.  相似文献   

6.
Indels are increasingly used in phylogenetics and play a major role in genome size evolution, and yet both the phylogenetic information content of indels and their evolutionary significance remain to be better assessed. Using three presumably independently evolving nuclear gene fragments (28S rDNA, β-fibrinogen, ornithine decarboxylase) from 29 families of neognathous birds, we have obtained a topology that is in general agreement with the current molecular consensus tree, supports the monophyly of Metaves, and provides evidence for the unresolved relationships within the Charadriiformes. Based on the retrieved topology, we assess the relative impact of indels and nucleotide substitutions and demonstrate that the superposition of the two kinds of data yields a topology that could not be obtained from either data set alone. Although only two out of three gene fragments reveal the deletion bias, the combined nucleotide insertion-to-deletion ratio is 0.22, indicating a rapid decrease of intron length. The average indel fixation rate in the neognaths is 2.5 times faster than that in therian (placental) mammals of similar geologic age. As in mammals, there is a considerable variation of indel fixation rate that is 1.5 times higher in Galloanseres compared to Neoaves, and 2.4 times higher in the Rallidae compared to the average for Neoaves (8.2 times higher compared to the related Gruidae). Our results add to the evidence that indel fixation rates correlate with lineage-specific evolutionary rates.  相似文献   

7.
The diversification of neoavian birds is one of the most rapid adaptive radiations of extant organisms. Recent whole-genome sequence analyses have much improved the resolution of the neoavian radiation and suggest concurrence with the Cretaceous-Paleogene (K-Pg) boundary, yet the causes of the remaining genome-level irresolvabilities appear unclear. Here we show that genome-level analyses of 2,118 retrotransposon presence/absence markers converge at a largely consistent Neoaves phylogeny and detect a highly differential temporal prevalence of incomplete lineage sorting (ILS), i.e., the persistence of ancestral genetic variation as polymorphisms during speciation events. We found that ILS-derived incongruences are spread over the genome and involve 35% and 34% of the analyzed loci on the autosomes and the Z chromosome, respectively. Surprisingly, Neoaves diversification comprises three adaptive radiations, an initial near-K-Pg super-radiation with highly discordant phylogenetic signals from near-simultaneous speciation events, followed by two post-K-Pg radiations of core landbirds and core waterbirds with much less pronounced ILS. We provide evidence that, given the extreme level of up to 100% ILS per branch in super-radiations, particularly rapid speciation events may neither resemble a fully bifurcating tree nor are they resolvable as such. As a consequence, their complex demographic history is more accurately represented as local networks within a species tree.  相似文献   

8.
《Comptes Rendus Palevol》2013,12(6):333-337
Hybridization is increasingly seen as an important source of adaptive genetic variation and biotic diversity. Recent phylogenetic studies on the early evolution of birds suggest that the early diversification of neoavian orders perhaps involved a period of extensive hybridization or incomplete lineage sorting. Phylogenetic error, saturation, long-branch attraction, and convergence make it difficult to detect ancient hybridization events and differentiate them from incomplete lineage sorting using sequence data. We used recently published retroposon marker data to visualize the early radiation of Neoaves within a phylogenetic network approach, and found that the most basal neoavian taxa indeed show a complex pattern of reticulated relationships. Moreover, the reticulation levels of different parts of the network are consistent with the insertion pattern of the retroposon elements. The use of network-based analyses on homoplasy-free data shows true conflicting signals and the taxa involved that are not represented in trees.  相似文献   

9.
Knowledge of avian phylogeny is prerequisite to understanding the circumstances and timing of the diversification of birds and the evolution of morphological, behavioral, and life-history traits. Recent molecular datasets have helped to elucidate the three most basal clades in the tree of living birds, but relationships among neoavian orders (the vast majority of birds) remain frustratingly vexing. Here, we examine intron 7 of the beta-fibrinogen gene in the most taxonomically inclusive survey of DNA sequences of nonpasserine bird families and orders to date. These data suggest that Neoaves consist of two sister clades with ecological parallelisms comparable to those found between marsupial and placental mammals. Some members of the putative respective clades have long been recognized as examples of convergent evolution, but it was not appreciated that they might be parts of diverse parallel radiations. In contrast, some traditional orders of birds are suggested by these data to be polyphyletic, with representative families in both radiations.  相似文献   

10.
Interspecific hybridization followed by polyploidization appears to have played a major role in plant diversification, but quantifying the contribution of this mechanism to diversification within taxonomically complex clades remains difficult. Incongruence among gene trees can provide critical insights, especially when combined with data on chromosome numbers, morphology, and geography. To further test our previous hypothesis on hybrid speciation in Persicaria (Polygonaceae), we performed molecular phylogenetic studies using three cpDNA regions and nuclear ITS sequences, with an emphasis on sampling within section Eupersicaria. Our analyses revealed major conflicts between the combined cpDNA tree and the nrITS tree; a variety of incongruence tests rejected stochastic error as the cause of incongruence in most cases. On the basis of our tree incongruence results and information on chromosome numbers, we hypothesize that the origin of 10 polyploid species involved interspecific hybridization. Our studies also support the recognition of several previously named species that have been treated as belonging within other species. Repeated allotetraploidy (as distinct from radiation at the tetraploid level) now appears to be the key mechanism governing the diversification of this taxonomically challenging group.  相似文献   

11.
Using molecular phylogenetic data and methods we inferred divergence times and diversification patterns for the weevil subfamily Ceutorhynchinae in the context of host‐plant associations and global climate over evolutionary time. We detected four major diversification shifts that correlate with both host shifts and major climate events. Ceutorhynchinae experienced an increase in diversification rate at ~53 Ma, during the Early Eocene Climate Optimum, coincident with a host shift to Lamiaceae. A second major diversification phase occurred at the end of the Eocene (~34 Ma). This contrasts with the overall deterioration in climate equability at the Eocene‐Oligocene boundary, but tracks the diversification of important host plant clades in temperate (higher) latitudes, leading to increased diversification rates in the weevil clades infesting temperate hosts. A third major phase of diversification is correlated with the rising temperatures of the Late Oligocene Warming Event (~26.5 Ma); diversification rates then declined shortly after the Middle Miocene Climate Transition (~14.9 Ma). Our results indicate that biotic and abiotic factors together explain the evolution of Ceutorhynchinae better than each of these drivers viewed in isolation.  相似文献   

12.
Recent molecular studies addressing the phylogenetic relationships of avian orders have had conflicting results. While studies using nuclear DNA sequences tend to support traditional taxonomic views, also supported by morphological data [(paleognaths (galloanseres (all other birds)))], with songbirds forming a clade within Neoaves (all other birds), analyses with complete mtDNA genomes have resulted in topologies that place songbirds as one of the earliest-diverging avian lineages. Considering that over half of the extant bird species are songbirds, these different results have very different implications for our understanding of avian evolution. We analyzed data sets comprising nearly 4 kb of mitochondrial DNA (mtDNA) (complete 12S, ND1, ND2, and cytochrome b) plus 600 bp of the nuclear gene c-mos for 15 birds that were chosen to represent all major avian clades and to minimize potential long-branch attraction problems; we used a partition-specific maximum likelihood approach. Our results show congruence with respect to the ingroup among phylogenies obtained with mtDNA and the nuclear gene c-mos, separately or combined. The data sets support a traditional avian taxonomy, with paleognaths (ratites and tinamous) occupying a basal position and with songbirds more derived and forming a monophyletic group. We also show that, for mtDNA studies, turtles may be a better outgroup for birds than crocodilians because of their slower rate of sequence evolution.  相似文献   

13.

Background  

Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade.  相似文献   

14.
Despite its amazing biodiversity, the Eastern Mediterranean remains a highly understudied region when compared withthe Western Mediterranean, restricting our understanding of diversity across the entire Mediterranean. Here we use a combination of molecular markers and presence/absence data from all species of the Eastern Mediterranean genus Ricotia collected across its full geographic range to determine historical, ecological, and evolutionary factors responsible for lineage-specific diversification in the Eastern Mediterranean. Network analysis based on molecular data revealed a high genetic structure within all lineages, and phylogenetic reconstructions based on the multispecies coalescent showed that within-lineage diversification corresponded to the onset of the Mediterranean climate. Reconstruction of ancestral histories indicates that the genus originated within Anatolia and spread across the Eastern Mediterranean and Levant using the Taurus mountains. Ecological niche models suggest that local populations did not go through any major distributional shifts and have persisted in present-day habitats since the Last Glacial Maximum. Furthermore, niche differentiation tests revealed significant differences between closely related species and showed the main variables predicting species limits to be different for each species. Our results give crucial information on the patterns and processes shaping diversity in the Eastern Mediterranean and show the main factors promoting diversification to be local environmental dynamics and ecological specialization and not large-scale latitudinal movements, as often reported for southern Europe. By determining local and regional patterns of diversification in an Eastern Mediterranean genus, we further our understanding of the major trends influencing plant diversity in the Mediterranean basin as a whole.  相似文献   

15.
Times of divergence among the three tribes included within the subfamily Phyllostominae were estimated using a Bayesian approach to infer dates of divergence based on mitochondrial and nuclear sequence data. The subfamily Phyllostominae is particularly attractive for such analysis, as it is one of the few groups of bats to have fossil specimens. Our molecular time analyses suggest that diversification among tribes and genera of phyllostomine bats occurred during the Early to Mid-Miocene, and was coincident with diversification events in two co distributed taxa: Caviomorph rodents and New World monkeys.  相似文献   

16.
Establishing the dates for the origin and main diversification events in the phylogeny of Ascomycota is among the most crucial remaining goals in understanding the evolution of Fungi. There have been several analyses of divergence times in the fungal tree of life in the last two decades, but most have yielded contrasting results for the origin of the major lineages. Moreover, very few studies have provided temporal estimates for a large set of clades within Ascomycota. We performed molecular dating to estimate the divergence times of most of the major groups of Ascomycota. To account for paleontological uncertainty, we included alternative fossil constraints as different scenarios to enable a discussion of the effect of selection of fossils. We used data from 6 molecular markers and 121 extant taxa within Ascomycota. Our various ‘relaxed clock’ scenarios suggest that the origin and diversification of the Pezizomycotina occurred in the Cambrian. The main lineages of lichen–forming Ascomycota originated at least as early as the Carboniferous, with successive radiations in the Jurassic and Cretaceous generating the diversity of the main modern groups. Our study provides new information about the timing of the main diversification events in Ascomycota, including estimates for classes, orders and families of both lichenized and non–lichenized Ascomycota, many of which had not been previously dated.  相似文献   

17.
To better understand the evolutionary history of Linanthus (Polemoniaceae) and its relatives, molecular phylogenies based on DNA sequence data from the internal transcribed spacer (ITS) region of nrDNA and the chloroplast gene matK were estimated using several methods. Our data suggest two separate and well-supported lineages of Linanthus in close association with two other genera-Leptodactylon and Phlox. These results agree with previous molecular systematic work on the Polemoniaceae, but do not support the traditional classification of the genus as a natural group, nor do they support the sectional classification within the genus. With a distribution centered primarily in western North America and a high degree of endemism in the California Floristic Province, it has been suggested by Raven and Axelrod that the origin and diversification of Linanthus and its relatives were tied to the development of a summer-dry climate in western North America, which began around 13-15 million years ago (mya). Increased drying during the Pliocene (1.2-5 mya) has also been hypothesized by Axelrod to have led to an increase in plant speciation in California and adjacent areas. Divergence times within the Linanthus lineages were estimated from the ITS and matK gene trees. A log-likelihood ratio test could not reject clock-like evolution for the matK data; however, the clock was strongly rejected for the ITS data set. Although ITS molecular evolution was not clock-like, the estimated times of divergence were similar to those of the matK data set. Within both lineages of Linanthus there seems to have been considerable diversification that has occurred since the Pliocene.  相似文献   

18.
The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies.  相似文献   

19.
Lamellodiscus Johnston & Tiegs 1922 (Monogenea, Diplectanidae) is a genus of common parasites on the gills of sparid fishes. Here we show that this genus is probably undergoing a fast molecular diversification, as reflected by the important genetic variability observed within three molecular markers (partial nuclear 18S rDNA, Internal Transcribed Spacer 1, and mitonchondrial Cytochrome Oxidase I). Using an updated phylogeny of this genus, we show that molecular and morphological evolution are weakly correlated, and that most of the morphologically defined taxonomical units are not consistent with the molecular data. We suggest that Lamellodiscus morphology is probably constrained by strong environmental (host-induced) pressure, and discuss why this result can apply to other taxa. Genetic variability within nuclear 18S and mitochondrial COI genes are compared for several monogenean genera, as this measure may reflect the level of diversification within a genus. Overall our results suggest that cryptic speciation events may occur within Lamellodiscus, and discuss the links between morphological and molecular evolution.  相似文献   

20.
We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed "WoodKing" (woodpeckers/rollers/kingfishers), "SCA" (owls/potoos/owlet-nightjars/hummingbirds/swifts), and "Conglomerati." In general, the support is highly significant with just two exceptions, the owls move from the "SCA" group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the "Conglomerati". Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号