首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enunciate the mechanisms whereby Se protects against cardiovascular diseases, weanling male Wistar rats were fed deficient (0.022 mg/kg diet) and adequate (0.159 mg/kg diet) Se diets for 14 and/or 39 wk. As the Se content and glutathione peroxidase activity were decreased and the lipid peroxide level was increased, the plasma 6-keto-PGF concentration of the Se-deficient group was markedly decreased in blood and tissues of the Se-deficient rats, as compared with the Se-adequate animals. Furthermore, the Se-deficient group had significantly lower plasma nitric oxide content and vascular nitric oxide synthase activity, higher erythrocyte sedimentation equation K value and aggregation index, and lower erythrocyte deformability than the Se-adequate group. Experimental Se deficiency also resulted in significant increases in serum total cholesterol and low-density lipoprotein cholesterol levels and a significant decrease in serum high-density lipoprotein cholesterol level. These results give some experimental supports to the hypothesis that low Se status and lipid peroxidation are involved in the etiology of cardiovascular diseases.  相似文献   

2.
Dietary intake of the essential trace element selenium (Se) regulates expression of genes for seleno-proteins and certain non-Se-containing proteins. However, these proteins do not account for all of Se's biological effects. The objective of this work was to identify additional genes whose expression is regulated by Se. Identification of these genes may reveal new functions for Se or define mechanisms for its biological effects. Weanling male Sprague-Dawley rats were fed a Torula yeast-based Se-deficient basal diet or the same diet supplemented with 0.5 mg Se/kg diet as sodium selenite for 13 weeks. Total RNA was used as template for RNA fingerprinting. Two differentially expressed cDNA fragments were identified and cloned. The first had 99% nucleotide identity with rat liver estrogen sulfotransferase (EST) isoform-6. The second had 99% nucleotide sequence identity with rat liver 2u-globulin. The mRNA levels for both were markedly reduced in Se deficiency. Laser densitometry showed that EST mRNA in Se deficiency was 7.3% of that in Se-adequate rat liver. The level of 2u-globulin mRNA in Se-deficient rat liver was only 12.6% of that in Se-adequate rat liver. These results indicate that dietary Se may play a role in steroid hormone metabolism in rat liver.  相似文献   

3.
Mammalian thioredoxin reductase (TRR; NADPH2:oxidized thioredoxin oxidoreductase, E.C. 1.6.4.5) is a new member of the family of selenocysteine-containing proteins. TRR activity in Se-deficient rat liver is reported to decrease to 4.5 to 15% of the activity in Se-adequate rat liver, similar to the fall in Se-dependent glutathione peroxidase-1 activity. Both glutathione peroxidase-1 enzyme activity and mRNA levels decrease dramatically in Se deficiency, whereas glutathione peroxidase-4 activity only decreases to 40% of Se-adequate levels and mRNA level is little affected by Se deficiency. The purpose of these experiments is to study the effect of Se status on TRR mRNA levels and enzyme activity in our well-characterized rat model, and to compare this regulation directly to the regulation of other Se-dependent proteins in male weanling rats fed Se-deficient diets or supplemented with dietary Se for 28 days. In two experiments, TRR activity in Se-deficient liver decreased to 15% of Se-adequate activity as compared to 2% and 40% of Se-adequate levels for GPX1 and GPX4, respectively. Using ribonuclease protection analysis, we found that TRR mRNA levels in Se-deficient rat liver decreased to 70% of Se-adequate levels. This decrease in TRR mRNA was similar to the GPX4 mRNA decrease in Se-deficient liver in these experiments, whereas GPX1 mRNA levels decreased to 23% of Se-adequate levels. This study clearly shows that TRR represents a third pattern of Se regulation with dramatic down-regulation of enzyme activity in Se deficiency but with only a modest decrease in mRNA level. The conservation of TRR mRNA in Se deficiency suggests that this is a valued enzyme; the loss of TRR activity in Se deficiency may be the cause of some signs of Se deficiency.  相似文献   

4.
5.
6.
Second-generation selenium-deficient weanling rats fed graded levels of dietary Se were used (a) to study the impact of initial Se deficiency on dietary Se requirements; (b) to determine if further decreases in selenoperoxidase expression, especially glutathione peroxidase 4 (Gpx4), affect growth or gross disease; and (c) to examine the impact of vitamin E deficiency on biochemical and molecular biomarkers of Se status. Rats were fed a vitamin E-deficient and Se-deficient crystalline amino acid diet (3 ng Se/g diet) or that diet supplemented with 100 μg/g all-rac-α-tocopheryl acetate and/or 0, 0.02, 0.05, 0.075, 0.1, or 0.2 μg Se/g diet as Na2SeO3 for 28 days. Se-supplemented rats grew 6.91 g/day as compared to 2.17 and 3.87 g/day for vitamin E-deficient/Se-deficient and vitamin E-supplemented/Se-deficient groups, respectively. In Se-deficient rats, liver Se, plasma Gpx3, red blood cell Gpx1, liver Gpx1 and Gpx4 activities, and liver Gpx1 mRNA levels decreased to <1, <1, 21, 1.6, 49, and 11 %, respectively, of levels in rats fed 0.2 μg Se/g diet. For all biomarkers, ANOVA indicated significant effects of dietary Se, but no significant effects of vitamin E or vitamin E × Se interaction, showing that vitamin E deficiency, even in severely Se-deficient rat pups, does not result in compensatory changes in these biochemical and molecular biomarkers of selenoprotein expression. Se requirements determined in this study, however, were >50 % higher than in previous studies that started with Se-adequate rats, demonstrating that dietary Se requirements determined using initially Se-deficient animals can result in overestimation of Se requirements.  相似文献   

7.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

8.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

9.
10.
Selenium (Se) is an essential micronutrient in human health and Se deficiency has been incriminated in the etiology of cardiovascular diseases. However, the effect of long-term Se deficiency on the antioxidant capacities of vascular tissue has not been elucidated. This study was to determine whether long-term Se deficiency might affect the antioxidant capacity of rat vascular tissue and whether the diet Se might affect the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat vascular tissue. Weanling male Wister rats were fed Se-deficient and Se-adequate diets for 12 mo. Se was supplemented in drinking water (1 μg Se/mL) for 1 mo. The arterial walls isolated from various groups were used in the assay. In comparison with the control, Se-deficient rats exhibited significant decreases of GPx activity and total antioxidant capacity in the arterial wall. Similar decreases appeared in the heart, liver, and kidney. The superoxide dismutase activity was also decreased in the Se-deficient rat’s arterial wall. Followed by Se supplementation, they were restored to different extent. TR activity was decreased in the heart, liver, and kidney, but increased in the arterial wall. The content of malondialdehyde was increased markedly in Se-deficient rats. In conclusion, a positive correlation exists between dietary Se and antioxidant capacity of rat vascular tissue except TR. It seems that the activities of GPx and TR in the rat arterial wall were mediated in different pathways by the Se status.  相似文献   

11.
Although the metabolic and toxicological interactions between essential element selenium (Se) and toxic element cadmium (Cd) have been reported for a long time, the experimental studies explored mostly acute, high-dose interactions. Limited data are available regarding the effects of Se-deficiency on toxicokinetics of cadmium, as well as on the levels of key trace elements—copper, zinc, and iron. In the present study, male and female Wistar weanling rats (n = 40/41) were fed either Se-deficient or Se-adequate diet (<0.06 or 0.14 mg Se per kilogram diet, respectively) for 12 weeks, and from week 9 were drinking water containing 0 or 50 mg Cd/l as cadmium chloride. At the end of the 12-week period, trace element concentrations were estimated by AAS. Selenium-deficient rats of both genders showed significantly lower accumulation of cadmium in the liver, compared to Se-adequate rats. Zinc and iron hepatic levels were not affected by Se-deficiency. However, a significant elevation of copper was found in the liver of Se-deficient rats of both genders. Cadmium supplementation increased zinc and decreased iron hepatic level, regardless of Se status and decreased copper concentration in Se-adequate rats. Se-deficiency was also found to influence the effectiveness of cadmium mobilization in male rats.  相似文献   

12.
The objective of this work was to determine whether long-term selenium (Se) deficiency might affect the antioxidant capacity of rat aorta, and the activities and expressions of glutathione peroxidase (GPx) and thioredoxin reductase (TR) in rat arterial walls. Weanling male Wister rats were fed Se-deficient or Se-adequate diets for 12 months. For the Se supplementation, sodium selenite was supplemented in drinking water (1 microg Se/ml) for 1 month. The aorta isolated from these groups were used to determine activities and mRNA levels. In comparison with the control, the activity and expression of GPx, superoxide dismutase activity and the total antioxidant capacity were significantly decreased in Se-deficient rats arterial walls. Following Se supplementation, they were restored to different extents. The content of malondialdehyde was increased markedly in Se-deficient rats. There seems an inverse relationship between the dietary Se and the activity and expression of TR. A positive relationship exists between dietary Se and the antioxidant capacity of rat arterial walls. The activities and expressions of GPx and TR in arterial walls were regulated by selenium by different mechanisms. Regulation of the expression of TR was mediated by reactive oxygen species, but of GPx by selenium status. The thioredoxin system may be the major cellular redox signaling system in rat arteries, rather than the glutathione system.  相似文献   

13.
Two groups of weanling Sprague-Dawley rats were fed a low-selenium basal diet (Se 0.009 mg/kg) and the same diet supplemented with sodium selenite (Se 0.25 mg/kg), respectively, for 1, 2, and 3 months. At each feeding time, the Ca2+-ATPase activity, Ca2+ uptake rate and the capacity of Ca2+ uptake in isolated cardiac sacroplasmic reticulum from the Se-deficient rats were decreased significantly compared to those from the Se-supplemented rats, the contents of lipid peroxide in postmitochondrial supernatant and isolated sarcoplasmic reticulum from the Se-deficient rats were significantly higher than that from Se-supplemented rats. Compared to the Se-supplemented rats, the cytosolic glutathione peroxidase activity in Se-deficient rats decreased significantly. In addition, significant linear negative correlations of lipid peroxide in postmitochondrial supernatant to sarcoplasmic reticular Ca2+-ATPase activity, Ca2+ uptake rate and to whole blood selenium concentration were observed. The results suggest that the enhancement of lipid peroxidation via the depressed glutathione peroxidase activity might be responsible for the decrease of Ca2+-ATPase and Ca2+ uptake activities in sarcoplasmic reticulum in Se-deficient animals.  相似文献   

14.
Classical glutathione peroxidase (GPX1) mRNA levels can decrease to less than 10% in selenium (Se)-deficient rat liver. The cis-acting nucleic acid sequence requirements for Se regulation of GPX1 mRNA levels were studied by transfecting Chinese hamster ovary (CHO) cells with GPX1 DNA constructs in which specific regions of the GPX1 gene were mutated, deleted, or replaced by comparable regions from unregulated genes such as phospholipid hydroperoxide glutathione peroxidase (GPX4). For each construct, stable transfectants were pooled two weeks after transfection, divided into Se-deficient (2 nM Se) or Se-adequate (200 nM Se) medium, and grown for an additional four days. On day of harvest, Se-deficient GPX1 and GPX4 activities averaged 13 +/- 2% and 15 +/- 2% of Se adequate levels, confirming that cellular Se status was dramatically altered by Se supplementation. RNA was isolated from replicate plates of cells and transfected mRNA levels were specifically determined by RNase protection assay. Analysis of chimeric GPX1/GPX4 constructs showed that the GPX4 3'-UTR can completely replace the GPX1 3'-UTR in Se regulation of GPX1 mRNA. We did not find any GPX1 coding regions that could be replaced by the corresponding GPX4 coding regions without diminishing or eliminating Se regulation of the transfected GPX1 mRNA. Further analysis of the GPX1 coding region demonstrated that the GPX1 Sec codon (UGA) and the GPX1 intron sequences are required for full Se regulation of transfected GPX1 mRNA levels. Mutations that moved the GPX1 Sec codon to three different positions within the GPX1 coding region suggest that the mechanism for Se regulation of GPX1 mRNA requires a Sec codon within exon 1. Lastly, we found that addition of the GPX1 3'-UTR to beta-globin mRNA can convey significant Se regulation to beta-globin mRNA levels when a UGA codon is placed within exon 1. We conclude that Se regulation of GPX1 mRNA requires a functional selenocysteine insertion sequence (SECIS) in the 3'-UTR and a Sec codon followed by an intron.  相似文献   

15.
The influence of selenium (Se) deficiency on the acute cardiotoxicity induced by the anticancer drug adriamycin (ADR) has been studied in rats by electrocardiography. Two categories were formed by feeding groups of rats a Se-supplemented and a Se-deficient diet. The supplemented animals were taken as normals. The two categories were treated with iv injections of saline solution containing ADR at doses of 0, 7.5, and 15 mg/kg body wt. The cardiac Se concentration and glutathione peroxidase (GSH-Px) activity in the Se-deficient groups were <2% lower than in the normals. The normal groups showed significant widening of the SaT and QaT durations when given 15 mg/kg ADR. The Se-deficient groups exhibited a dose-dependent widening of the SaT and QaT duration at 7.5 and 15 mg/kg and narrowing of the PQ duration at 15 mg/kg ADR. No heart rate or QRS duration changes were detected in both categories. Our results suggest that an imbalance of the antioxidant system is associated with Se deficiency and that Se plays a role in preventing the cardiac functional disorder attributable to oxygen free radical formation induced by ADR.  相似文献   

16.
17.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

18.
To clarify the effects of selenium (Se) and magnesium (Mg) deficiencies on Se and glutathione peroxidase (GSHPx) status, weanling male Wistar rats weighing 50–60 g were placed on four kinds of diets divided by two levels of Se (0.5 or 0.019 mg/kg) and Mg (500 or 50 mg/kg) for 8 wk. Magnesium deficiency had an influence on distribution of Se, which was increased in muscle and decreased in other tissues. The changes in GSHPx matched those in Se. The levels of Se and GSHPx in most tissues were lower in Se-Mg-deficient rats than in Se-deficient rats. Thus, selenium and Mg deficiencies would make oxidant lesion more serious than Se deficiency.  相似文献   

19.
Phospholipid hydroperoxide glutathione peroxidase (PHGPX) is the second intracellular selenium (Se)-dependent glutathione peroxidase (GSH-Px) identified in mammals. Our objectives were to determine the effect of dietary vitamin E and Se levels on PHGPX activity expression in testis, epididymis, and seminal vesicles of pubertal maturing rats, and the relationship of PHGPX expression with testicular development and sperm quality. Forty Sprague-Dawley male weanling rats (21-d old), were initially fed for 3 wk a torula yeast basal diet (containing 0.05 mg Se/kg) supplemented with marginal levels of Se (0.1 mg/kg as Na2SeO3) and vitamin E (25 IU/kg as all-rac-α-tocopheryl acetate). Then, rats were fed the basal diets supplemented with 0 or 0.2 mg Se/kg and 0 or 100 IU vitamin E/kg diet during the 3-wk period of pubertal maturing. Compared with the Se-supplemented rats, those fed the Se-deficient diets retained 31, 88, 67, and 50% of Se-dependent GSH-Px activities in liver, testis, epididymis, and seminal vesicles, respectively. Testes and seminal vesicles had substantially higher (5-to 20-fold) PHGPX activity than liver. Dietary Se deficiency did not affect PHGPX activities in the reproductive tissues, but reduced PHGPX activity in liver by 28% (P < 0.0001). Dietary vitamin E supplementation did not affect PHGPX activity in liver, whereas it raised PHGPX activity in seminal vesicles by 43% (P < 0.005). Neither dietary vitamin E nor Se levels affected body weight gains, reproductive organ weights, or sperm counts and morphology. In conclusion, expression of PHGPX activity in testis and seminal vesicles was high and regulated by dietary Se and vitamin E differently from that in liver.  相似文献   

20.
Influence of selenium deficiency on vital functions in rats   总被引:1,自引:0,他引:1  
To clarify the relationship between selenium (Se) deficiency and functional disorders, the authors determined the Se concentration, anti-oxidant enzyme activity, and other parameters in rats fed a Se-deficient diet. Rats fed the Se-deficient diet showed a decrease in Se concentration and glutathione peroxidase (GSH-Px) activity in plasma, erythrocytes, heart, liver, and skeletal muscle from the first week after the initiation of the diet, an increase in heart lipid peroxide concentration from the second week, and an increase in liver glutathione S-transferase activity from the fourth week. From the twelfth week, a decrease in the growth rate in the rats fed the Se-deficient diet was observed. In spite of this growth impairment, no changes in electrocardiogram, muscle tone, degree of hemolysis, plasma biochemistry, or hematological values were detected. In summary, the authors found that a reduction of body Se is easily induced, but that the appearance of functional disorders following Se deficiency is difficult to detect in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号