首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aberrant DNA methylation of CpG islands is among the earliest and most frequent alterations in cancer. It is of great importance to develop simple and high-throughput methods of methylation analysis for earlier cancer diagnosis or the detection of recurrence. In this study, bisulfite-modified target DNA arrays were prepared on positively charged nylon membrane with two different procedures: fixing PCR products and fixing genomic DNA. First, a bisulfite PCR product array was prepared through fixing PCR products amplified in bisulfite sequencing primers from the bisulfite-modified genomic DNA of different clinical samples on membrane. Furthermore, bisulfite-modified genomic DNA of the different samples was directly fixed on membrane to fabricate bisulfite genomic DNA arrays. The two kinds of arrays were hybridized by probes labeled with digoxigenin, and the hybridization signals were obtained through chemiluminescent detection. The methylation statuses of the IGFBP7 gene for breast tumor and normal tissue samples and for normal human blood cell samples were detected successfully by the two procedures. It was shown that the methods are reliable and sensitive and that they have high potential in screening molecular methylation markers from a large number of clinical samples.  相似文献   

2.
A procedure for the analysis of the methylation status of imprinted genes is described. The method offers a rapid and reliable alternative to conventional methods such as Southern blots and methylation-specific polymerase chain reaction (PCR) (i.e., allele-specific methylation-specific PCR). The efficient resolution of the differentially methylated alleles is demonstrated for three human imprinted genes: SNRPN, LIT1 (alias KCNQ1OT1), and H19. Abnormal imprinting of SNRPN is associated with the Angelman/Prader-Willi syndromes, and that of LIT1 and H19 with the Beckwith-Wiedemann syndrome. The method is based on methylation-specific PCR followed by denaturing high-performance liquid chromatography (MSP/DHPLC). Briefly, genomic DNA is initially subjected to an in vitro bisulfite treatment, whereby unmethylated cytosines are deaminated. Subsequent PCR amplifications, using primers specific for modified DNA, are aimed at DNA segments that show parent-of-origin-specific methylation. PCR conditions are chosen that allow an efficient amplification of both alleles. The PCR products representing the two alleles are identical in size; they differ, however, at a number of positions within the amplified DNA segment. The DHPLC analysis allows very efficient resolution of the two populations of PCR products, providing qualitative and quantitative results.  相似文献   

3.
MethPrimer: designing primers for methylation PCRs   总被引:37,自引:0,他引:37  
MOTIVATION: DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. RESULTS: MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.  相似文献   

4.
Methylation-sensitive single-strand conformation analysis (MS-SSCA) is a method of screening for methylation changes at CpG sites in a region of DNA. After bisulfite modification, the region of interest is amplified using primers specific for bisulfite-modified sequences. The amplified products are denatured and run on a nondenaturing polyacrylamide gel. The sequence differences caused by methylation lead to the formation of different secondary structures (conformers) with different mobilities. MS-SSCA is a convenient and rapid method for screening large numbers of samples for methylation. Individual bands can readily be isolated and sequenced allowing more detailed analysis of methylation changes. In this article, we present a protocol for MS-SSCA and outline strategies for the design of primers for amplifying bisulfite-modified DNA sequences.  相似文献   

5.
Accurate assessment of gene methylation in formalin-fixed, paraffin-embedded archived tissue (FF-PEAT) by microdissection remains challenging because the tissue volume is small and DNA is damaged. In addition, methods for methylation assessment, such as methylation-specific PCR (MSP), require sodium bisulfite modification (SBM) on purified DNA, which causes major loss of DNA. On-slide SBM, in which DNA is modified in situ before isolation of tumor cells, eliminates DNA purification steps and allows histology-oriented assessment of gene methylation. This study describes a protocol and use of on-slide SBM using 20 FF-PEAT of colorectal cancers with intratumoral adenoma components to detect accumulation of gene methylation during colorectal malignant transformation. Deparaffinized tissue sections were incubated in sodium bisulfite solution for 8 hours at 60 degrees C, stained with hematoxylin, and then microdissected. Proteinase K lysate was directly used as a template in subsequent PCR. Using on-slide SBM, 282-bp-long bisulfite direct sequencing was possible. Yield of modified DNA was 2.6-fold greater than standard SBM on average. The mean conversion rate was 97%, and false-positive or false-negative results were not observed in subsequent MSP. Intratumoral heterogeneity by accumulation of p16 and Ras association domain family protein 1a methylation during malignant transformation were shown by MSP comparing cancer with adenoma parts within a single section. On-slide SBM is applicable in most methylation studies using FF-PEAT. It allows detailed, intratumoral analysis of methylation heterogeneity within solid tumors. On-slide SBM will significantly improve our approach and understanding of epigenetic events in minimal disease and the carcinogenic process.  相似文献   

6.
Sodium bisulfite modification-based fine mapping of methylated cytosines represents the gold standard technique for DNA methylation studies. A major problem with this approach, however is that it results in considerable DNA degradation, and large quantities of genomic DNA material are needed if numerous genomic regions are to be profiled. In this study, we examined whether whole genome amplification (WGA) techniques can be applied to sodium bisulfite-treated DNA and whether WGA would bias DNA methylation results. Sodium bisulfite-treated DNA was amplified using a standard WGA method: optimized primer-extension preamplification (PEP) with degenerate primers. Following the PCR of bisulfite-treated DNA, the DNA methylation profiles of specific DNA fragments were assessed using three approaches: (i) direct sequencing of the overall product; (ii) the sequencing of cloned PCR products; and (iii) methylation-sensitive single nucleotide primer extension (MS-SNuPE)--and compared with those obtained from bisulfite-treated DNA not subjected to WGA. Our data indicates that the DNA methylation profiles obtained from WGA of sodium bisulfite-treated DNA are consistent with those obtained from non-WGA DNA. The average difference in methylation percentage calculated from the two sets of template using MS-SNuPE was 4%. If our results are replicated on other genomic loci, WGA may become a useful technique in DNA methylation studies.  相似文献   

7.
Methylated cytosines appear as sequence variations following bisulfite treatment and polymerase chain reaction (PCR) amplification. By using methylation-specific PCR (MSP), it is possible to detect methylated sequences in a background of unmethylated DNA with a high level of sensitivity. MSP is frequently used to identify methylated alleles in carcinogenesis, and may be combined with the TaqMan real-time PCR system, which uses fluorescence-based detection of amplification products during the amplification phase of the PCR and increases the sensitivity of detection (MethyLight). Sequences that have been incompletely converted during the bisulfite treatment are frequently coamplified during MSP, resulting in an overestimation of DNA methylation. The presence of amplified sequences originating from partially unconverted material may be determined by sequencing or by restriction digests or Southern blots of MSPs. Alternately, we have developed a method where the PCR and conversion assay are combined within a single TaqMan reaction by using an additional fluorescent probe directed against unconverted DNA (ConLight-MSP). We recommend that MSP detection always should include a step to detect unconverted DNA to avoid overestimation of the frequency or level of methylated DNA in the sample.  相似文献   

8.
Methylation-specific PCR (MSP) is frequently used to distinguish methylated alleles in the genome. Sequences that have been incompletely converted during bisulfite treatment are frequently co-amplified during MSP. For accurate MSP, it is important to detect methylated sequences in a background of unconverted DNA with a high level of sensitivity. We report here sensitive techniques, bisulfite conversion-specific MSP (BS-MSP) to accurately evaluate CpG methylation. BS-MSP provides accurate results across a wide spectrum of bisulfite conversion levels. BS-MSP is also confirmed to be a useful technique for the routine analysis of clinical tumor specimens that were paraffin-embedded and microdissected. BS-MSP thus provides the powerful features of ease of use and compatibility with paraffin sections. We recommend that methylation analysis should include a step to eliminate unconverted DNA to avoid overestimation of the DNA methylation level in the samples.  相似文献   

9.
Rapid and quantitative method of allele-specific DNA methylation analysis   总被引:2,自引:0,他引:2  
Several biological phenomena depend on differential methylation of chromosomal strands. While understanding the role of these processes requires information on allele-specific methylation, the available methodologies are not quantitative or labor-intensive. We describe a novel, rapid method to quantitate allele-specific DNA methylation based on the combination of bisulfite PCR and Pyrosequencing. In this method, DNA is first treated with sodium bisulfite, which converts cytosine but not 5-methylcytosine to uracil. Genes of interest are subsequently amplified using PCR. Allele-specific methylation can then be determined by pyrosequencing each allele individually using sequencing primers that incorporate single nucleotide polymorphisms (SNPs) that allow differentiation between the two parental alleles. This allele-specific methylation methodology can potentially afford quantitative analyses relevant to the regulation of X chromosome inactivation, allele-specific expression of genes in the immune system, repetitive elements, and genomic imprinting. As an illustration of our new method, we quantitated allele-specific methylation of the differentially methylated region of the H19 gene, which is imprinted. Although we could reliably determine allele-specific methylation with our technique, additional studies will be required to confirm the ability of our assay to measure loss of imprinting.  相似文献   

10.
11.
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that can be used for rapid quantitation of methylation at individual CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated Cytosine to Uracil while leaving 5-methylcytosine unaltered. Strand-specific PCR is performed to generate a DNA template for quantitative methylation analysis using Ms-SNuPE. SNuPE is then performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being interrogated. Reaction products are electrophoresed on polyacrylamide gels for visualization and quantitation by phosphorimage analysis. The Ms-SNuPE technique is similar to other quantitative assays that use bisulfite treatment of genomic DNA to discriminate unmethylated from methylated Cytosines (i.e., COBRA, pyrosequencing). Ms-SNuPE can be used for high-throughput methylation analysis and rapid quantitation of Cytosine methylation suitable for a wide range of biological investigations, such as checking aberrant methylation changes during tumorigenesis, monitoring methylation changes induced by DNA methylation inhibitors or for measuring hemimethylation. Approximately two to four CpG sites can be interrogated in up to 40 samples by Ms-SNuPE in less than 5 h, after PCR amplification of the desired target sequence and preparation of PCR amplicons.  相似文献   

12.
《Gene》1998,206(1):63-67
Mouse ES cells with a null mutation of the known DNA methyltransferase retain some residual DNA methylation and can methylate foreign sequences de novo. We have used bisulfite genomic sequencing to examine the sequence specificity and distributions of methylation of a hypermethylated CG island sequence, mouse A-repeats. There were 13 CG dinucleotides in the region examined, 12 of which were methylated to variable extents in all DNAs. We found that: (1) there is considerable residual DNA methylation in ES cells lacking the known DNA methyltransferase (29% of normal methylation in the complete knockout ES DNA); (2) this other activity methylates at exactly the same CG sites as the major methyltransferase; and (3) differences in the distribution of methylated sites between A-repeats in these DNAs are consistent with this other activity methylating in a random de novo fashion. Also, the lack of any methylation in non-CG sites argues that, in other studies where non-CG methylation sites have been found by bisulfite sequencing, detection of such sites of non-CG methylation is not an inherent artifact in this methodology.  相似文献   

13.
The bisulfite genomic sequencing method is one of the most widely used techniques for methylation analysis in heterogeneous unbiased PCR, amplifying for both methylated and unmethylated alleles simultaneously. However, it requires labor-intensive and time-consuming cloning and sequencing steps. In the current study, we used a denaturing high-performance liquid chromatography (DHPLC) procedure in a complementary way with the bisulfite genomic sequencing to analyze the methylation of differentially methylated regions (DMRs) of imprinted genes. We showed reliable and reproducible results in distinguishing overall methylation profiles of DMRs regions of human SNRPN, H19, MEST/PEG1, LIT1, IGF2, TSSC5, WT1 antisense, and mouse H19, Mest/Peg1, Igf2R imprinted genes. These DHPLC profiles were in accordance with bisulfite genomic sequencing data and may serve as a type of "fingerprint," revealing the overall methylation status of DMRs associated with sample heterogeneity. We conclude that DHPLC analysis could be used to increase the throughput efficiency of methylation pattern analysis of imprinted genes after the bisulfite conversion of genomic DNA and unbiased PCR amplification.  相似文献   

14.
建立了适用于水稻基因组特定基因甲基化检测的亚硫酸氢钠测序法,并利用此方法对FIE2A基因CpG岛部分片段的甲基化差异进行了研究。采用CTAB法提取水稻叶片和胚乳细胞的基因组DNA,经亚硫酸氢钠化学修饰后,针对已修饰的FIE基因序列设计特异引物并结合巢式PCR扩增,TA载体克隆、测序,最后对测序结果进行分析。结果表明巢式PCR能够增加特异性产物的产生,FIE基因CpG岛在对称的CG和CNG位点甲基化水平较高,而在非对称CNN位点甲基化水平最低,此外在叶片中的平均甲基化水平较高。由此表明本研究建立的亚硫酸氢钠测序法适用于水稻基因组特定基因甲基化状态的检测。  相似文献   

15.
Bisulfite genomic sequencing is a widely used technique foranalyzing cytosine-methylation of DNA. By treating DNA withbisulfite, cytosine residues are deaminated to uracil, whileleaving 5-methylcytosine largely intact. Subsequent PCR andnucleotide sequence analysis permit unequivocal determinationof the methylation status at cytosine residues. A major caveatassociated with the currently practiced procedure is that ittakes 16–20 hr for completion of the conversion of cytosineto uracil. Here we report that a complete deamination of cytosineto uracil can be achieved in shorter periods by using a highlyconcentrated bisulfite solution at an elevated temperature.Time course experiments demonstrated that treating DNA with9 M bisulfite for 20 min at 90°C or 40 min at 70°C allcytosine residues in the DNA were converted to uracil. Underthese conditions, the majority of 5-methylcytosines remainedintact. When a high molecular weight DNA derived from a cellline (containing a number of genes whose methylation statuswas known) was treated with bisulfite under the above conditionsand amplified and sequenced, the results obtained were consistentwith those reported in the literature. Although some degradationof DNA occurred during this process, the amount of treated DNArequired for the amplification was nearly equal to that requiredfor the conventional bisulfite genomic sequencing procedure.The increased speed of DNA methylation analysis with this novelprocedure is expected to advance various aspects of DNA sciences.  相似文献   

16.
E-cadherin是一种细胞粘附因子,通过增强细胞之间的粘附而起到抑制肿瘤转移的作用.Ecadherin基因启动子区的高甲基化是导致其在众多肿瘤细胞中表达下调甚至缺失的主要原因之一.本实验首先抽提SGC-7901细胞(胃腺癌细胞)、A549细胞(肺腺癌细胞)、MCF-7细胞(乳腺癌细胞)等3个肿瘤细胞株的全基因组DNA,然后对抽提的DNA进行亚硫酸氢盐修饰和纯化回收,根据修饰后的DNA序列设计引物并对其进行PCR扩增.然后将PCR扩增产物与pUC-T TA载体连接并转化入感受态大肠杆菌DH5α中进行培养,对筛选出的含有阳性重组子的菌落进行测序.测序结果显示,3个肿瘤细胞株的E-cadherin基因启动子区的CpG岛都呈现了高度的甲基化,亚硫酸氢盐的修饰效率达到了99.2%.综上研究表明,亚硫酸氢盐修饰后PCR(BSP)联合TA克隆测序可以对肿瘤细胞某基因启动子区CpG岛的甲基化水平进行精确量化,研究所使用的3个肿瘤细胞株均可作为研究肿瘤细胞E-cadherin基因甲基化的细胞模型.  相似文献   

17.
A method for determining methylation density of target CpG islands has been established. In the method, DNA microarray was prepared by spotting a set of PCR products amplified from bisulfite-converted sample DNAs. The PCR products on the microarray were treated by SssI methyltransferase and labeled with TAMRA fluorescence. A recombinant, antibody-like methyl-CpG-binding protein labeled with Cy5 fluorescence was used to identify symmetrical methyl-CpG dinucleotide of the PCR products on the microarray. By use of a standard curve with control mixtures, the ratio of two fluorescence signals can be converted into percentage values to assess methylation density of targeted fragments. We obtained the methylation density of six CpG islands on the two tumor suppressor genes of CDK2A and CDK2B from seven cancer cell line samples and two normal blood samples. The validity of this method was tested by bisulfite sequencing. This method not only allows the quantitative analysis of regional methylation density of a set of given genes but also could provide information of methylation density for a large amount of clinical samples.  相似文献   

18.
Singal R  Grimes SR 《BioTechniques》2001,30(1):116-120
Cytosine methylation at CpG dinucleotides is an important control mechanism in development, differentiation, and neoplasia. Bisulfite genomic sequencing and its modifications have been developed to examine methylation at these CpG dinucleotides. To use these methods, one has to (i) manually convert the sequence to that produced by bisulfite conversion and PCR amplification, taking into account that cytosine residues at CpG dinucleotides may or may not be converted depending on their methylation status, (ii) identify relevant restriction sites that may be used for methylation analysis, and (iii) conduct similar steps with the other DNA strand since the two strands of DNA are no longer complementary after bisulfite conversion. To automate these steps, we have developed a macro that can be used with Microsoft Word. This macro (i) converts genomic sequence to modified sequence that would result after bisulfite treatment facilitating primer design for bisulfite genomic sequencing and methylation-sensitive PCR assay and (ii) identifies restriction sites that are preserved in bisulfite-converted and PCR-amplified product only if cytosine residues at relevant CpG dinucleotides are methylated (and thereby not converted to uracil) in the genomic DNA.  相似文献   

19.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

20.
Rand KN  Molloy PL 《BioTechniques》2010,49(4):xiii-xvii
We describe a new method that is well-suited for the determination of the methylation level of repetitive sequences such as human Alu elements. We have applied the method to the analysis of cell and tissue DNAs and expect it to have wide utility in studies of DNA methylation in cancer and other disease states, in monitoring response to epigenetic cancer therapies and in epidemiological studies. Only 1 ng DNA is needed for a duplex, one-tube real-time PCR in which methylation level and the amount of input DNA are concurrently measured. The relative cutting by the methylation-sensitive enzyme BstUI is compared with that of the methylation-insensitive enzyme DraI to give a measure of DNA methylation. The method depends upon the use of 5'-tailed, 3'-blocked oligonucleotides called facilitator oligonucleotides (Foligos). Only cut DNAs with specific matching sequences at their 3' ends can copy the tails of the Foligos and thus become tagged and available for subsequent PCR. Both the tagging and PCR are carried out by the same enzyme, Taq DNA polymerase. Because amplification only occurs if suitable ends have been generated in the target DNA, we have called this method end-specific PCR (ESPCR). ESPCR avoids the bisulfite treatment step that is usually required to measure methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号