首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The high frequency of mutations in Mutator stocks of maize is the result of transposition of Mu elements. Nine different Mu elements that share the 220 bp Mu terminal inverted repeats have been described. Mu1 elements have been found inserted into most of the molecularly characterized mutant alleles isolated from Mutator stocks, and most Mutator stocks contain a high number of Mu1 elements (10-60). However, it is clear that additional Mu elements, which share the Mu1 termini but have unrelated internal sequences, can also transpose in Mutator stocks. We were interested in comparing the mutation frequency and type of elements that inserted into a particular locus when Mutator stocks with differing numbers of Mu1 elements were utilized. Furthermore, previous studies with Mu-induced mutations have demonstrated that the element that inserted most frequently was Mu1. Therefore, to try to obtain Mu elements different from Mu1 we utilized a stock that had a low number (3-6) of Mu1 elements as well as a Mutator stock with a more typical number of Mu1 elements (20-60). Utilizing both stocks, we isolated numerous mutants at one gene, Bronze 1 (Bz1), and compared the type of elements inserted. In this paper we report that both the high and low Mu1 stocks produced bz1 mutants at frequencies characteristic of Mutator stocks, 6.6 and 4.3 x 10(-5), respectively. We describe the isolation of 20 bz1 mutations, and the initial molecular characterization of eight unstable mutations: two from the high Mu1 stock and six from the low Mu1 stock. The six alleles isolated from the low Mu1 stock appear to contain deleted Mu1 elements, and the two alleles isolated from the high Mu1 stock contain elements very similar to Mu1. When the mutants from the low Mu1 stocks were examined, it was found that the Mu1-related elements increased from 3-6 copies to 9-20 copies in one generation. The high number of Mu1-related elements was maintained in subsequent outcrosses. This spontaneous activation and amplification of Mu1-related elements occurred in at least 1% of the low Mu1 plants.  相似文献   

3.
4.
5.
6.
7.
J. Brown  V. Sundaresan 《Genetics》1992,130(4):889-898
The Mutator system of transposable elements is characterized by a family of transposons called Mu transposons that share common termini and are actively transposing in Robertson's Mutator (Mu) lines of maize. Mu lines lose transposition activity during propagation by either outcrossing or inbreeding. This loss of transposition activity, which can occur at non-Mendelian frequencies, is in the form of loss of forward transposition activity resulting in a decrease in the generation of new mutations, as well as the loss of mutability of Mu transposon induced mutations, and it has been correlated with hypermethylation of the Mu elements. Previous studies have concluded that restoration of Mutator transposon activity by crossing inactive lines back to active lines is incomplete or transient, and depends upon the sex of the inactive parent. Further, it has been proposed that the inactive system is dominant to the active system, with the dominance possibly mediated through a negative regulatory factor that is preferentially transmitted through the female. In this study, we have examined the frequencies of loss and restoration of Mu transposon activity using a Mu line carrying an insertion in the bronze 1 locus. We find that transmission of Mu transposon activity to non-Mu plants can occur at high rates through males and females, but individual cases of decreased transmission through the male were observed. We also find that in crosses between inactive-Mu and active-Mu plants, reactivation was efficient as well as heritable, regardless of the sex of the inactive parent. Similar results were obtained whether the inactivation occurred in an outcross or a self. In all cases examined, loss of Mu transposon activity was correlated with hypermethylation of Mu elements, and reactivation was correlated with their demethylation. Our results indicate that an inactive Mu system does not exhibit dominance over an active Mu system. We conclude that contrary to current models, inactivation and its maintenance is not obligatorily associated with a dominant negative regulatory factor whether nuclear or cytoplasmic, and we propose a revised model to account for these and other observations.  相似文献   

8.
9.
10.
The autonomous MuDR element of the Mutator (Mu) transposable element family of maize encodes at least two proteins, MURA and MURB. Based on amino acid sequence similarity, previous studies have reported that MURA is likely to be a transposase. The functional characterization of MURA has been hindered by the instability of its cDNA, mudrA, in Escherichia coli. In this study, we report the first successful stabilization and expression of MURA in Saccharomyces cerevisiae. Gel mobility shift assays demonstrate that MURA is a DNA-binding protein that specifically binds to sequences within the highly conserved Mu element terminal inverted repeats (TIRs). DNase I and 1,10-phenanthroline-copper footprinting of MURA-Mu1 TIR complexes indicate that MURA binds to a conserved approximately 32-bp region in the TIR of Mu1. In addition, MURA can bind to the same region in the TIRs of all tested actively transposing Mu elements but binds poorly to the diverged Mu TIRs of inactive elements. Previous studies have reported a correlation between Mu transposon inactivation and methylation of the Mu element TIRs. Gel mobility shift assays demonstrate that MURA can interact differentially with unmethylated, hemimethylated, and homomethylated TIR substrates. The significance of MURA's interaction with the TIRs of Mu elements is discussed in the context of what is known about the regulation and mechanisms of Mutator activities in maize.  相似文献   

11.
12.
Summary The Cy transposable element system is composed of two genetically defined elements: an rcy receptor element inserted at the Bronze-1 locus; and an independently segregating regulatory element, Cy. The Cy system is not functionally homologous to any of the non-Mutator transposable element systems. Evidence is presented that supports a relationship between the Cy system and the family of Mu1-homologous transposable elements that are responsible for the Mutator phenomenon. Although related, Cy elements and the Mu1-homologous elements are not identical; Cy is inherited in a near-Mendelian fashion, in contrast to the non-Mendelian inheritance of the Mu1-homologous elements.  相似文献   

13.
14.
The Mu transposon of maize exists in a highly mutagenic strain called Robertson's Mutator. Plants of this strain contain 10-50 copies of the Mu element, whereas most maize strains and other plants have none. When Mutator plants are crossed to plants of the inbred line 1S2P, which does not have copies of Mu, the progeny plants have approximately the same number of Mu sequences as did their Mutator parent. Approximately one-half of these copies have segregated from their parent and one-half have arisen by transposition and are integrated into new positions in the genome. This maintenance of copy number can be accounted for by an extremely high rate of transposition of the Mu elements (10-15 transpositions per gamete per generation). When Mutator plants are self-pollinated, the progeny double their Mu copy number in the first generation, but maintain a constant number of Mu sequences with subsequent self-pollinations. Transposition of Mu and the events that lead to copy number maintenance occur very late in the development of the germ cells but before fertilization. A larger version of the Mu element transposes but is not necessary for transposition of the Mu sequences. The progeny of crosses with a Mutator plant occasionally lack Mutator activity; these strains retain copies of the Mu element, but these elements no longer transpose.  相似文献   

15.
Woodhouse MR  Freeling M  Lisch D 《Genetics》2006,172(1):579-592
Transposons make up a sizable portion of most genomes, and most organisms have evolved mechanisms to silence them. In maize, silencing of the Mutator family of transposons is associated with methylation of the terminal inverted repeats (TIRs) surrounding the autonomous element and loss of mudrA expression (the transposase) as well as mudrB (a gene involved in insertional activity). We have previously reported that a mutation that suppresses paramutation in maize, mop1, also hypomethylates Mu1 elements and restores somatic activity to silenced MuDR elements. Here, we describe the progressive reactivation of silenced mudrA after several generations in a mop1 background. In mop1 mutants, the TIRA becomes hypomethylated immediately, but mudrA expression and significant somatic reactivation is not observed until silenced MuDR has been exposed to mop1 for several generations. In subsequent generations, individuals that are heterozygous or wild type for the Mop1 allele continue to exhibit hypomethylation at Mu1 and mudrA TIRs as well as somatic activity and high levels of mudrA expression. Thus, mudrA silencing can be progressively and heritably reversed. Conversely, mudrB expression is never restored, its TIR remains methylated, and new insertions of Mu elements are not observed. These data suggest that mudrA and mudrB silencing may be maintained via distinct mechanisms.  相似文献   

16.
Developmental and genetic aspects of Mutator excision in maize   总被引:4,自引:0,他引:4  
The regulation of excision of Mu elements of the Mutator transposable element family of maize is not well understood. We have used somatic instability of Mu receptor elements from the Bronze 1 and Bronze 2 loci to monitor the frequency and the timing of excision of Mu elements in several tissues. We show that spot size in the aleurone of a bz2::mu1 stock varies between one to approximately 256 cells. This indicates that excision events begin eight divisions prior to full aleurone differentiation and end after the last division of the aleurone. We show that excision is equally biased for late events in all other tissues studied. A locus on chromosome 5 has been identified that affects spot size, possibly by altering the timing of Mu excision. Using somatic excision as an assay of Mutator activity, we found that activity can change in small sectors of the tassel; however, there are no overall activity changes in the tassel during the period of pollen shedding. We also report the recovery of germinal revertants for the bz1::mu1 and bz2::mu1 alleles. One of these revertant alleles was characterized by Southern blot analysis and found to be similar to the progenitor of the mutable allele.  相似文献   

17.
18.
R. Martienssen  A. Baron 《Genetics》1994,136(3):1157-1170
Transposable elements from the Robertson's Mutator family are highly active insertional mutagens in maize. However, mutations caused by the insertion of responder (non-autonomous) elements frequently depend on the presence of active regulator (autonomous) elements for their phenotypic effects. The hcf106::Mu1 mutation has been previously shown to depend on Mu activity in this way. The dominant Lesion-mimic 28 mutation also requires Mu activity for its phenotypic effects. We have used double mutants to show that the loss of Mu activity results in the coordinate suppression of both mutant phenotypes. This loss can occur somatically resulting in large clones of cells that have a wild-type phenotype. Autonomous and non-autonomous Mutator elements within these clones are insensitive to digestion with methylation-sensitive enzymes, suggesting extensive methylation of CG and non-CG cytosine residues. Our data are consistent with the sectors being caused by the cycling of MuDR regulatory elements between active and inactive phases. The pattern of sectors suggests that they are clonal and that they are derived from the apical cells of the vegetative shoot meristem. We propose that these cells are more likely to undergo epigenetic loss of Mu activity because of their longer cell division cycle during shoot growth. Coordinate suppression of unlinked mutations can be used to perform mosaic analysis in maize.  相似文献   

19.
The Mutator transposable element system of maize was originally identified through its induction of mutations at an exceptionally high frequency and at a wide variety of loci. The Mu1 subfamily of transposable elements within this system are responsible for the majority of Mutator-induced mutations. Mu 1-related elements were isolated from active Mutator plants and their flanking DNA was characterized. Sequence analyses revealed perfect nine base target duplications directly flanking the insert for 13 of the 14 elements studied. Hybridizational studies indicated that Mu1-like elements insert primarily into regions of the maize genome that are of low copy number. This preferential selection of low copy number DNA as targets for Mu element insertion was not directed by any specific secondary structure(s) that could be detected in this study, but the 9-bp target duplications exhibited a discernibly higher than random match with the consensus sequence 5'-G-T-T-G-G/C-A-G-G/A-G-3'.  相似文献   

20.
Structure and regulation of the maize Bronze2 promoter   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号