首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The remodeling of epithelial monolayers induced by hepatocyte growth factor (HGF) results in the reorganization of actin cytoskeleton and cellular junctions. We previously showed that the membrane-cytoskeleton linker ezrin plays a major role in HGF-induced morphogenic effects. Here we identified a novel partner of phosphorylated ezrin, the Fes kinase, that acts downstream of ezrin in HGF-mediated cell scattering. We found that Fes interacts directly, through its SH2 domain, with ezrin phosphorylated at tyrosine 477. We show that in epithelial cells, activated Fes localizes either to focal adhesions or cell-cell contacts depending on cell confluency. The recruitment and the activation of Fes to the cell-cell contacts in confluent cells depend on its interaction with ezrin. When this interaction is impaired, Fes remains in focal adhesions and as a consequence the cells show defective spreading and scattering in response to HGF stimulation. Altogether, these results provide a novel mechanism whereby ezrin/Fes interaction at cell-cell contacts plays an essential role in HGF-induced cell scattering and implicates Fes in the cross-talk between cell-cell and cell-matrix adhesion.  相似文献   

2.
Hepatocyte growth factor (HGF) exerts mitogenic and motogenic effects in different cell types. In the epithelial cell line mHepR1 we found that HGF induced pronounced alterations in cell morphology and promoted cell adhesion and spreading. To analyze the mechanisms how HGF affects these integrin mediated functions we studied the physical linkage of integrins with the cytoskeleton. First we found that HGF increased the expression of different integrin subunits in subconfluent cells and influenced the distribution of integrins on the cell surface. To address the physical association of integrins with the cytoskeleton we analyzed Triton X-100-extracted cell fractions using flow cytometry. Here we show that cultivation of the cells with HGF for 24 h prior to integrin cross-linking significantly enhanced the cytoskeletal anchorage of integrins. To further find out whether HGF directly induces an integrin–cytoskeleton link without subsequent cross-linking we added HGF to suspended cells but failed to detect cytoskeletally immobilized integrins in the detergent-insoluble cell fraction which could be related to the absence of a calcium response induced by HGF. Overall, the results indicate that HGF promotes the physical linkage of integrins to the cytoskeleton which requires additional stimulation of integrins.  相似文献   

3.
ERM (ezrin, radixin, moesin) proteins act as linkers between the plasma membrane and the actin cytoskeleton. An interaction between their NH(2)- and COOH-terminal domains occurs intramolecularly in closed monomers and intermolecularly in head-to-tail oligomers. In vitro, phosphorylation of a conserved threonine residue (T567 in ezrin) in the COOH-terminal domain of ERM proteins disrupts this interaction. Here, we have analyzed the role of this phosphorylation event in vivo, by deriving stable clones producing wild-type, T567A, and T567D ezrin from LLC-PK1 epithelial cells. We found that T567A ezrin was poorly associated with the cytoskeleton, but was able to form oligomers. In contrast, T567D ezrin was associated with the cytoskeleton, but its distribution was shifted from oligomers to monomers at the membrane. Moreover, production of T567D ezrin induced the formation of lamellipodia, membrane ruffles, and tufts of microvilli. Both T567A and T567D ezrin affected the development of multicellular epithelial structures. Collectively, these results suggest that phosphorylation of ERM proteins on this conserved threonine regulates the transition from membrane-bound oligomers to active monomers, which induce and are part of actin-rich membrane projections.  相似文献   

4.
Activation of the c-Met receptor tyrosine kinase through its ligand, hepatocyte growth factor (HGF), promotes mitogenic, motogenic, and morphogenic cellular responses. Aberrant HGF/c-Met signaling has been strongly implicated in tumor cell invasion and metastasis. Both HGF and its receptor c-Met have been shown to be overexpressed in human synovial sarcoma, which often metastasizes to the lung; however, little is known about HGF-mediated biological effects in this sarcoma. Here, we provide evidence that Crk adaptor protein is required for the sustained phosphorylation of c-Met-docking protein Grb2-associated binder 1 (Gab1) in response to HGF, leading to the enhanced cell motility of human synovial sarcoma cell lines SYO-1, HS-SY-II, and Fuji. HGF stimulation induced the sustained phosphorylation on Y307 of Gab1 where Crk was recruited. Crk knockdown by RNA interference disturbed this HGF-induced tyrosine phosphorylation of Gab1. By mutational analysis, we identified that Src homology 2 domain of Crk is indispensable for the induction of the phosphorylation on multiple Tyr-X-X-Pro motifs containing Y307 in Gab1. HGF remarkably stimulated cell motility and scattering of synovial sarcoma cell lines, consistent with the prominent activation of Rac1, extreme filopodia formation, and membrane ruffling. Importantly, the elimination of Crk in these cells induced the disorganization of actin cytoskeleton and complete abolishment of HGF-mediated Rac1 activation and cell motility. Time-lapse microscopic analysis revealed the significant attenuation in scattering of Crk knockdown cells following HGF treatment. Furthermore, the depletion of Crk remarkably inhibited the tumor formation and its invasive growth in vivo. These results suggest that the sustained phosphorylation of Gab1 through Crk in response to HGF contributes to the prominent activation of Rac1 leading to enhanced cell motility, scattering, and cell invasion, which may support the crucial role of Crk in the aggressiveness of human synovial sarcoma.  相似文献   

5.
The membrane cytoskeleton linker ezrin participates in several functions downstream of the receptor Met in response to Hepatocyte Growth Factor (HGF) stimulation. Here we report a novel interaction of ezrin with a HECT E3 ubiquitin ligase, WWP1/Aip5/Tiul1, a potential oncogene that undergoes genomic amplification and overexpression in human breast and prostate cancers. We show that ezrin binds to the WW domains of WWP1 via the consensus motif PPVY(477) present in ezrin's C-terminus. This association results in the ubiquitylation of ezrin, a process that requires an intact PPVY(477) motif. Interestingly ezrin ubiquitylation does not target the protein for degradation by the proteasome. We find that ezrin ubiquitylation by WWP1 in epithelial cells leads to the upregulation of Met level in absence of HGF stimulation and increases the response of Met to HGF stimulation as measured by the ability of the cells to heal a wound. Interestingly this effect requires ubiquitylated ezrin since it can be rescued, after depletion of endogenous ezrin, by wild type ezrin but not by a mutant of ezrin that cannot be ubiquitylated. Taken together our data reveal a new role for ezrin in Met receptor stability and activity through its association with the E3 ubiquitin ligase WWP1. Given the role of Met in cell proliferation and tumorigenesis, our results may provide a mechanistic basis for understanding the role of ezrin in tumor progression.  相似文献   

6.
《The Journal of cell biology》1995,131(5):1231-1242
Ezrin is a component of the microvillus cytoskeleton of a variety of polarized epithelial cells and is believed to function as a membrane- cytoskeletal linker. In this study, we isolated microvilli from human placental syncytiotrophoblast as a model system for biochemical analysis of ezrin function. In contrast to intestinal microvilli, ezrin is a major protein component of placental microvilli, comprising approximately 5% of the total protein mass and present at about one quarter of the molar abundance of actin. Gel filtration and chemical cross-linking studies demonstrated that ezrin exists mainly in the form of noncovalent dimers and higher order oligomers in extracts of placental microvilli. A novel form of ezrin, apparently representing covalently cross-linked adducts, was present as a relatively minor constituent of placental microvilli. Both oligomers and adducts remained associated with the detergent-insoluble cytoskeleton, indicating a tight interaction with actin filaments. Moreover, stimulation of human A431 carcinoma cells with EGF induces the rapid formation of ezrin oligomers in vivo, thus identifying a signal transduction pathway involving ezrin oligomerization coincident with microvillus assembly. In addition to time course studies, experiments with tyrosine kinase and tyrosine phosphatase inhibitors revealed a correlation between the phosphorylation of ezrin on tyrosine and the onset of oligomer formation, consistent with the possibility that phosphorylation of ezrin might be required for the generation of stable oligomers. Based on these observations, a model for the assembly of cell surface structures is proposed.  相似文献   

7.
8.
埃兹蛋白:生物学特征及其在肿瘤转移中的作用   总被引:8,自引:0,他引:8  
埃兹蛋白(ezrin)是埃兹蛋白、根蛋白和膜突蛋白(ezrin-radixin-moesin,ERM)家族成员之一,主要参与上皮细胞中细胞骨架与胞膜之间的连接,具有维持细胞形态和运动、连接黏附分子及调节信号转导等功能。近年来的研究发现,埃兹蛋白在肿瘤细胞中的表达异常,提示其在肿瘤的浸润、转移机制中发挥重要作用。  相似文献   

9.
The apical microvilli are closely related with the development and the maintenance of cell polarization, and the length of microvilli varies in a regular way among cell types. Ezrin, a member of the ezrin/radixin/moesin (ERM) family, seems to be involved in the formation and stabilization of the apical microvilli. We found that phosphorylation of ezrin caused elongation of microvilli via a p38 MAP-kinase signaling pathway in an immortalized mouse hepatic cell line. When, in the oncogenic Raf-1-transfected mouse hepatic cell line, epithelial to mesenchymal transition (EMT) indicated as down-regulation of E-cadherin and up-regulation of Snail occurred, loss of microvilli and down-regulation of ezrin but not radixin and moesin were also observed. In the Raf-1 transfectants treated with the MAP-kinase inhibitor PD98059 and the p38 MAP-kinase inhibitor SB203580, the numbers of microvilli and the expression of ezrin, E-cadherin and Snail were recovered. More interestingly, treatment with SB203580 induced elongation of microvilli and increased phosphorylation of ezrin (at Thr-567 and Tyr-353). Phosphorylated ezrin-positive dots were colocalized with actin-positive dots on the surface of some Raf-1 transfectants treated with SB203580. These results suggested that phosphorylation of ezrin via the p38 MAP-kinase signaling pathway might be involved in the formation of microvilli during development of epithelial cell polarization.  相似文献   

10.
Ezrin, primarily acts as a linker between the plasma membrane and the cytoskeleton, is involved in many cellular functions, including regulation of actin cytoskeleton, control of cell shape, adhesion, motility, and modulation of signaling pathways. Although ezrin is now recognized as a key component in tumor metastasis, its roles and the underlying mechanisms remain unclear. In the present study, we chose highly metastatic human lung carcinoma 95D cells, which highly express the ezrin proteins, as a model to examine the functional roles of ezrin in tumor suppression. An ezrin-silenced 95D cell line was established using lentivirus-mediated short hairpin RNA method. CCK-8 assay and soft agar assay analysis showed that downregulation of ezrin significantly suppressed the tumorigenicity and proliferation of 95D cells in vitro. cell migration and invasion studies showed that ezrin-specific deficiency in the cells caused the substantial reduction of the cell migration and invasion. In parallel, it also induced rearrangements of the actin cytoskeleton. Flow cytometry assay showed that changes in the ezrin protein level significantly affected the cell cycle distribution and eventual apoptosis. Furthermore, further studies showed that ezrin regulated the expression level of E-cadherin and CD44, which are key molecules involved in cell growth, migration, and invasion. Meanwhile, the suppression of ezrin expression also sensitized cells to antitumor drugs. Altogether, our results demonstrated that ezrin played an important role in the tumorigenicity and metastasis of lung cancer cells, which will benefit the development of therapeutic strategy for lung cancer.  相似文献   

11.
Src-dependent ezrin phosphorylation in adhesion-mediated signaling   总被引:4,自引:0,他引:4       下载免费PDF全文
In addition to providing a regulated linkage between the membrane and the actin cytoskeleton, ezrin participates in signal transduction pathways. Here we describe that expression of the ezrin Y145F mutant delays epithelial cell spreading on fibronectin by inhibiting events leading to FAK activation. The defect in spreading was rescued by the overexpression of catalytically functional Src. We demonstrate that ezrin Y145 is phosphorylated in A431 cells stimulated with epidermal growth factor (EGF) and in v-Src-transformed cells. Moreover in cells devoid of Src, SYF-/- fibroblasts, ezrin Y145 phosphorylation could only be detected upon the introduction of an active form of Src. The phosphorylation of ezrin at Y145 required prior binding of the Src SH2 domain to ezrin. Our results further show that Src activity influences its binding to ezrin and a positive feedback mechanism for Src-mediated Y145 phosphorylation is implied. Interestingly, cells expressing ezrin Y145F did not proliferate when cultured in a 3D collagen gel. Collectively, our results demonstrate a key signaling input of Src-dependent ezrin phosphorylation in adhesion-mediated events in epithelial cells.  相似文献   

12.
Superficial wounds in the gastrointestinal tract rapidly reseal by coordinated epithelial cell migration facilitated by cytokines such as hepatocyte growth factor (HGF)/scatter factor released in the wound vicinity. However, the mechanisms by which HGF promotes physiological and pathophysiologic epithelial migration are incompletely understood. Using in vitro models of polarized T84 and Caco-2 intestinal epithelia, we report that HGF promoted epithelial spreading and RhoA GTPase activation in a time-dependent manner. Inducible expression of enhanced green fluorescent protein-tagged dominant-negative RhoA significantly attenuated HGF-induced spreading. HGF expanded a zone of partially flattened cells behind the wound edge containing basal F-actin fibers aligned in the direction of spreading. Concomitantly, plaques positive for the focal adhesion protein paxillin were enhanced. HGF induced an increase in the translation of paxillin and, to a lesser extent, beta1-integrin. This was independent of cell-matrix adhesion through beta1-integrin. Subcellular fractionation revealed increased cosedimentation of paxillin with plasma membrane-containing fractions following HGF stimulation, without corresponding enhancements in paxillin coassociation with beta1 integrin or actin. Tyrosine phosphorylation of paxillin was reduced by HGF and was sensitive to the Src kinase inhibitor PP2. With these taken together, we propose that HGF upregulates a free cytosolic pool of paxillin that is unaffiliated with either the cytoskeleton or focal cell-matrix contacts. Thus early spreading responses to HGF may partly relate to increased paxillin availability for incorporation into, and turnover within, dynamic cytoskeletal/membrane complexes whose rapid and transient adhesion to the matrix drives migration.  相似文献   

13.
肝细胞生长因子对主要器官/组织损伤的修复作用   总被引:10,自引:0,他引:10  
肝细胞生长因子(HGF)是一种多功能的生长因子,它参与多种细胞的增殖、迁移和形态发生。HGF对多种成熟的器官/组织有营养修复作用,促进肝、肾、肺等损伤器官的再生,同时也是神经系统新的营养因子之一。本综合近年来有关献对HGF在主要器官或组织损伤中的修复作用作一概括性介绍。  相似文献   

14.
Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery.  相似文献   

15.
The sodium hydrogen exchanger isoform 3 (NHE3) mediates absorption of sodium, bicarbonate and water from renal and intestinal lumina. This activity is fundamental to the maintenance of a physiological plasma pH and blood pressure. To perform this function NHE3 must be present in the apical membrane of renal tubular and intestinal epithelia. The molecular determinants of this localization have not been conclusively determined, although linkage to the apical actin cytoskeleton through ezrin has been proposed. We set out to evaluate this hypothesis. Functional studies of NHE3 activity were performed on ezrin knockdown mice (Vil2kd/kd) and NHE3 activity similar to wild-type animals detected. Interpretation of this finding was difficult as other ERM (ezrin/radixin/moesin) proteins were present. We therefore generated an epithelial cell culture model where ezrin was the only detectable ERM. After knockdown of ezrin expression with siRNA, radixin and moesin expression remained undetectable. Consistent with the animal ultrastructural data, cells lacking ezrin retained an epithelial phenotype but had shortened and thicker microvilli. NHE3 localization was identical to cells transfected with non-targeting siRNA. The attachment of NHE3 to the apical cytoskeleton was unaltered as assessed by fluorescent recovery after photobleaching (FRAP) and the solubility of NHE3 in Triton X-100. Baseline NHE3 activity was unaltered, however, cAMP-dependent inhibition of NHE3 was largely lost even though NHE3 was phosphorylated at serines 552 and 605. Thus, ezrin is not necessary for the apical localization, attachment to the cytoskeleton, baseline activity or cAMP induced phosphrylation of NHE3, but instead is required for cAMP mediated inhibition.  相似文献   

16.
Tumor cell migration may favor local mass expansion and metastasis dissemination. Several tumors were found to express the receptor for platelet-activating factor (PAF), a potent mediator of leukocyte chemotaxis and endothelial cell migration. However, its functional role on tumor cells is largely unexplored. In the present study, we evaluated the motogenic effect of PAF on Chinese hamster ovarian (CHO) cancer cells transfected with the human PAF-receptor cDNA (CHO PAF-R). By using time-lapse recording, we detected a rapid motogenic response to PAF stimulation on CHO PAF-R, whereas no effect was evident on vector-only transfected cells. Such an effect was observed on scattered cell motility, on cells seeded on a fibronectin- or collagen-coated surface, and on migration of confluent monolayer cells. Cell speed increased at 1 h and was maximal 6-8 h after PAF stimulation on CHO PAF-R. Concomitantly, PAF induced marked changes in cytoskeleton actin distribution with cell contraction, assembling of stress fibers, and polar foci of adhesion. In conclusion, the present study demonstrates that PAF is a potent inducer of tumor cell motility, thus suggesting a role for this mediator in tumor growth and dissemination.  相似文献   

17.
Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells.  相似文献   

18.
We have recently demonstrated the regulated expression ofHGF/SFand its receptor (c-met) during mouse mammary gland development together with the mitogenic, motogenic and morphogenic effects of exogenous HGF/SF on primary mammary epithelial cells in culture. This study was undertaken to analyze the influence of HGF/SF on reconstituted mouse mammary gland developmentin vivo.Here we report that overexpression of HGF/SF induces a range of alterations in the architecture of virgin mouse mammary gland. These include an enhancement of ductal end bud (mammary gland morphoregulatory control point) size and numbers and hyperplastic branching morphogenesis. These data are the first demonstration of the effects of HGF/SF on mammary epitheliumin vivo.  相似文献   

19.
《The Journal of cell biology》1994,125(6):1371-1384
To examine the functions of ERM family members (ezrin, radixin, and moesin), mouse epithelial cells (MTD-1A cells) and thymoma cells (L5178Y), which coexpress all of them, were cultured in the presence of antisense phosphorothioate oligonucleotides (PONs) complementary to ERM sequences. Immunoblotting revealed that the antisense PONs selectively suppressed the expression of each member. Immunofluorescence microscopy of these ezrin, radixin, or moesin "single-suppressed" MTD-1A cells revealed that the ERM family members are colocalized at cell-cell adhesion sites, microvilli, and cleavage furrows, where actin filaments are densely associated with plasma membranes. The ezrin/radixin/moesin antisense PONs mixture induced the destruction of both cell-cell and cell-substrate adhesion, as well as the disappearance of microvilli. Ezrin or radixin antisense PONs individually affected the initial step of the formation of both cell-cell and cell-substrate adhesion, but did not affect the microvilli structures. In sharp contrast, moesin antisense PONs did not singly affect cell-cell and cell-substrate adhesion, whereas it partly affected the microvilli structures. These data indicate that ezrin and radixin can be functionally substituted, that moesin has some synergetic functional interaction with ezrin and radixin, and that these ERM family members are involved in cell-cell and cell-substrate adhesion, as well as microvilli formation.  相似文献   

20.
Activation of the hepatocyte growth factor (HGF) receptor in epithelial cells results in lamellipodia protrusion, spreading, migration, and tubule formation. We have previously reported that these morphogenic effects are dependent on MAPK activation at focal adhesions. In the present study we demonstrate that activated ERK phosphorylates paxillin on serine 83 and that mutation of this site eliminates HGF-stimulated increased association of paxillin and FAK in subconfluent cells. Failure to activate FAK at focal adhesions results in a loss of FAK-PI 3-kinase association and the marked reduction of Rac activation after HGF stimulation. Expression of paxillin mutants that disrupt ERK association or phosphorylation inhibits HGF-induced cell spreading, migration, and tubulogenesis. These data demonstrate that the paxillin-MAPK complex serves as a central regulator of HGF-stimulated FAK and Rac activation in the vicinity of focal adhesions, thus promoting the rapid focal adhesion turnover and lamellipodia extension that are required for migratory and tubulogenic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号