首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A1 is an anti-apoptotic member of the Bcl-2 family that is up-regulated in inflammatory myeloid cells. In the present study, we investigated the role of A1 in the maintenance of acute inflammation in mice. Mice possess three genes encoding highly related isoforms of A1. A1-a isoform mRNA was minimally expressed in resident peritoneal macrophages, but was present at a 300-fold higher level in inflammatory macrophages elicited by i.p. infection with Toxoplasma gondii. In comparison, A1-b and A1-d levels were 3- and 10-fold higher, respectively. Peritoneal leukocytosis was decreased in infected A1-a-deficient mice compared with wild-type, and this reduction was associated with a small but reproducible enhancement of survival. These effects could not be explained by an alteration in peritoneal parasite load, nor by increased apoptosis of infected inflammatory cells, which were protected from cell death by an A1-a-independent mechanism. Increased apoptosis in inflammatory neutrophils was observed sporadically in A1-a-deficient mice. Regulation of apoptosis by A1-a may be an important proinflammatory event in acute host responses.  相似文献   

2.
During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1β and G-CSF as well as reduced levels of anti-inflammatory TGF-β. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.  相似文献   

3.
Our previous studies show that Bcl-2, a regulator of apoptosis, may be involved in the reduction of mucous cell metaplasia (MCM) during recovery from inflammatory responses. The present study was to determine whether neutrophilic inflammation mediates Bcl-2 expression in mucous cells. Rats were intratracheally instilled with 50-1000 microg of LPS. The number of neutrophils recovered by bronchoalveolar lavage (BAL) increased with the dose of LPS, and the percentage of Bcl-2-expressing cells increased with the numbers of neutrophils in the BAL. Depletion of neutrophils did not reduce MCM, but the percentage of Bcl-2-positive cells increased 1.8-fold in neutrophil-depleted compared with controls. Injection of rats with bezafibrate, an inducer of cytochrome P-450, doubled the number of neutrophils in the BAL, decreased MCM twofold compared with vehicle-injected controls, and reduced Bcl-2 expression. Bcl-2 mRNA levels decreased in a tracheal epithelial cell line treated with bezafibrate. These data demonstrate that Bcl-2 expression is independent of the number of neutrophils in the BAL and that bezafibrate may directly reduce Bcl-2 expression in epithelial cells.  相似文献   

4.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

5.
A hallmark of many inflammatory diseases is the destruction of tissue cells by infiltrating hematopoietic cells including lymphocytes, neutrophils, and macrophages. The regulation of apoptosis of both target tissue cells and the infiltrating cells is one of the key events that defines the initiation and the progression of inflammation. However, the precise picture of the apoptosis regulation of the cells at the inflammatory sites is still unclear. We recently isolated a novel apoptosis inhibitory factor, termed AIM, which is secreted exclusively by tissue macrophages. In this report, we present unique characteristics of AIM associated with liver inflammation (hepatitis), identified by introducing an experimental hepatitis in both AIM-transgenic mice, which overexpress AIM in the body, and normal mice. First, endogenous AIM expression in macrophages is rapidly increased in response to inflammatory stimuli. Second, AIM appears to inhibit the death of macrophages in the inflammatory regions, judging by the remarkably increased number of macrophages observed in the liver from transgenic mice. In addition, we show that AIM also enhances the phagocytosis by macrophages, which emphasizes the multifunctional character of AIM. All these findings strongly provoke an idea that AIM may play an important role in hepatitis pathogenesis in a sequential manner; first AIM expression is up-regulated by inflammatory stimuli, and then in an autocrine fashion, AIM supports the survival of infiltrating macrophages as well as enhances phagocytosis by macrophages, which may result in an efficient clearance of dead cells and infectious or toxic reagents.  相似文献   

6.
Anthracycline antibiotics are inducers of an immunogenic form of apoptosis that has immunostimulatory properties because of the release of damage-associated molecular patterns. To study the mechanisms used by the innate immune system to sense this immunogenic form of cell death, we established an in vivo model of cell death induced by intraperitoneal injection of doxorubicin, a prototype of anthracyclines. The acute sterile inflammation in this model is characterized by rapid influx of neutrophils and increased levels of IL-6 and monocyte chemotactic protein-1. We demonstrate that acute inflammation induced by doxorubicin is associated with apoptosis of monocytes/macrophages and that it is specific for doxorubicin, an immunogenic chemotherapeutic. Further, the inflammatory response is significantly reduced in mice deficient in myeloid differentiation primary response gene 88 (MyD88), TLR-2 or TLR-9. Importantly, a TLR-9 antagonist reduces the recruitment of neutrophils induced by doxorubicin. By contrast, the acute inflammatory response is not affected in TRIF(Lps2) mutant mice and in TLR-3, TLR-4 and caspase-1 knockout mice, which shows that the inflammasome does not have a major role in doxorubicin-induced acute inflammation. Our findings provide important new insights into how the innate immune system senses immunogenic apoptotic cells and clearly demonstrate that the TLR-2/TLR-9-MyD88 signaling pathways have a central role in initiating the acute inflammatory response to this immunogenic form of apoptosis.  相似文献   

7.
Oxidative stress plays a role in the pathophysiology of emphysema through the activation of tissue proteases and apoptosis. We examined the effects of ozone exposure by exposing BALB/c mice to either a single 3-h exposure or multiple exposures over 3 or 6 wk, with two 3-h exposures per week. Compared with air-exposed mice, the increase in neutrophils in bronchoalveolar lavage fluid and lung inflammation index was greatest in mice exposed for 3 and 6 wk. Lung volumes were increased in 3- and 6-wk-exposed mice but not in single-exposed. Alveolar space and mean linear intercept were increased in 6- but not 3-wk-exposed mice. Caspase-3 and apoptosis protease activating factor-1 immunoreactivity was increased in the airway and alveolar epithelium and macrophages of 3- and 6-wk-exposed mice. Interleukin-13, keratinocyte chemoattractant, caspase-3, and IFN-γ mRNA were increased in the 6-wk-exposed group, but heme oxygenase-1 (HO-1) mRNA decreased. matrix metalloproteinase-12 (MMP-12) and caspase-3 protein expression increased in lungs of 6-wk-exposed mice. Collagen area increased and epithelial area decreased in airway wall at 3- and 6-wk exposure. Exposure of mice to ozone for 6 wk induced a chronic inflammatory process, with alveolar enlargement and damage linked to epithelial apoptosis and increased protease expression.  相似文献   

8.
9.
cGMP-dependent protein kinase (PKG) is a multifunctional protein. Whether PKG plays a role in ischemia-reperfusion-induced kidney injury (IRI) is unknown. In this study, using an in vivo mouse model of renal IRI, we determined the effect of renal IRI on kidney PKG-I levels and also evaluated whether overexpression of PKG-I attenuates renal IRI. Our studies demonstrated that PKG-I levels (mRNA and protein) were significantly decreased in the kidney from mice undergoing renal IRI. Moreover, PKG-I transgenic mice had less renal IRI, showing improved renal function and less tubular damage compared with their wild-type littermates. Transgenic mice in the renal IRI group had decreased tubular cell apoptosis accompanied by decreased caspase 3 levels/activity and increased Bcl-2 and Bag-1 levels. In addition, transgenic mice undergoing renal IRI demonstrated reduced macrophage infiltration into the kidney and reduced production of inflammatory cytokines. In vitro studies showed that peritoneal macrophages isolated from transgenic mice had decreased migration compared with control macrophages. Taken together, these results suggest that PKG-I protects against renal IRI, at least in part through inhibiting inflammatory cell infiltration into the kidney, reducing kidney inflammation, and inhibiting tubular cell apoptosis.  相似文献   

10.
Asthma is characterized by airway inflammation, which can be now assessed by the analysis of induced sputum. Ten patients with asthma were investigated during acute exacerbation for the quantification of apoptosis, for Bcl-2 and Fas expression, in induced sputum lymphocytes. They were compared to 12 patients with chronic obstructive pulmonary disease (COPD), and 10 healthy controls. Spontaneous apoptosis was determined by staining nuclei with propidium iodide, and analyzed with a FACScan. Bcl-2 was measured by Western blotting, and results were obtained by densitometric scanning, done by the gel proanalyser. The investigation of Fas was performed using the streptavidin-biotin preroxidase-complex method. Patients with asthma and patients with COPD exhibited a significant increase of cellularity, percentage of neutrophils, eosinophils and lymphocytes when compared to healthy controls. Apoptosis in induced sputum mononuclear cells was found decreased in patients with asthma compared to COPD patients and healthy controls. The quantification of apoptosis was measured after exposure to anti-cytokine antibodies. Anti-TNF-alpha antibody blocked the apoptosis in both patients groups and healthy controls, suggesting that TNF-alpha acted as an inducer of apoptosis. Anti-IL-10 blocked apoptosis completely exclusively in patients with asthma. Bcl-2 expression was found to be increased in induced sputum mononuclear cells from patients with asthma, compared to healthy controls and patients with COPD. Expression of Fas could be detected in patients with asthma, at a lower level than COPD patients and healthy controls. Distinct mechanisms of apoptosis were found in patients with asthma and patients with COPD, characterized by different levels of Bcl-2 and Fas expression. Induction of apoptosis should be a beneficial process in allergic inflammation traduced in induced sputum mononuclear cells. The apoptosis process is assumed by two different mechanisms in asthma and COPD. Our findings indicated that in asthmatic patients, activated lymphocytes accumulate in the bronchi; because of their prolonged survival that maintains inflammation.  相似文献   

11.
Role of IL-18 in acute lung inflammation.   总被引:12,自引:0,他引:12  
We have examined the role of IL-18 after acute lung inflammation in rats caused by intrapulmonary deposition of IgG immune complexes. Constitutive IL-18 mRNA and protein expression (precursor form, 26 kDa) were found in normal rat lung, whereas in inflamed lungs, IL-18 mRNA was up-regulated; in bronchoalveolar (BAL) fluids, the 26-kDa protein form of IL-18 was increased at 2-4 h in inflamed lungs and remained elevated at 24 h, and the "mature" protein form of IL-18 (18 kDa) appeared in BAL fluids 1-8 h after onset of inflammation. ELISA studies confirmed induction of IL-18 in inflamed lungs (in lung homogenates and in BAL fluids). Prominent immunostaining for IL-18 was found in alveolar macrophages from inflamed lungs. When rat lung macrophages, fibroblasts, type II cells, and endothelial cells were cultured in vitro with LPS, only the first two produced IL-18. Intratracheal administration of rat recombinant IL-18 in the lung model caused significant increases in lung vascular permeability and in BAL content of neutrophils and in BAL content of TNF-alpha, IL-1beta, and cytokine-induced neutrophil chemoattractant, whereas intratracheal instillation of anti-IL-18 greatly reduced these changes and prevented increases in BAL content of IFN-gamma. Intratracheal administration of the natural antagonist of IL-18, IL-18 binding protein, resulted in suppressed lung vascular permeability and decreased BAL content of neutrophils, cytokines, and chemokines. These findings suggest that endogenous IL-18 functions as a proinflammatory cytokine in this model of acute lung inflammation, serving as an autocrine activator to bring about expression of other inflammatory mediators.  相似文献   

12.
Glucocorticoid-induced TNFR-related gene (GITR) participates in the immune/inflammatory response. Because GITR expression has been described in cells other than T lymphocytes, we investigated whether it also modulates acute inflammatory response. Using GITR-deficient (GITR(-/-)) mice, we analyzed the role of GITR in the development of carrageenan-induced lung inflammation (pleurisy) by studying several proinflammatory markers 2-8 h after carrageenan injection. When compared with GITR(+/+), GITR(-/-) mice exhibited decreased production of turbid exudate containing a lower number of leukocytes. This was correlated with the reduction of inflammatory markers (including TNF-alpha, IL-1beta, myeloperoxidase, inducible NO synthase, and cyclooxygenase 2) in the pleural exudate and/or in the lung. Moreover, endothelial cells expressed lower levels of adhesion molecules. In lungs of GITR(+/+) mice, GITR ligand expression was not modulated during pleurisy, while that of GITR increased, as a consequence of increased infiltration by GITR-expressing cells and of GITR up-regulation in macrophages and endothelial cells. Finally, cotreatment of GITR(+/+) mice with carrageenan and Fc-GITR fusion protein decreased the number of inflammatory cells (pleural macrophages and lung neutrophils) as compared with carrageenan treatment alone, confirming that GITR plays a role in the modulation of pleurisy.  相似文献   

13.
In airways, the ecto-nucleoside triphosphate diphosphohydrolase CD39 plays a central role in the regulation of physiological mucosal nucleotide concentrations and likely contributes to the control of inflammation because accelerated ATP metabolism occurs in chronic inflammatory lung diseases. We sought to determine whether constant elevated CD39 activity in lung epithelia is sufficient to cause inflammation and whether this affects the response to acute LPS or Pseudomonas aeruginosa exposure. We generated transgenic mice overexpressing human CD39 under the control of the airway-specific Clara cell 10-kDa protein gene promoter. Transgenic mice did not develop any spontaneous lung inflammation. However, intratracheal instillation of LPS resulted in accelerated recruitment of neutrophils to the airways of transgenic mice. Macrophage clearance was delayed, and the amounts of CD8(+) T and B cells were augmented. Increased levels of keratinocyte chemoattractant, IL-6, and RANTES were produced in transgenic lungs. Similarly, higher numbers of neutrophils and macrophages were found in the lungs of transgenic mice infected with P. aeruginosa, which correlated with improved bacteria clearance. The transgenic phenotype was partially and differentially restored by coinstillation of P2X(1) or P2X(7) receptor antagonists or of caffeine with LPS. Thus, a chronic increase of epithelial CD39 expression and activity promotes airway inflammation in response to bacterial challenge by enhancing P1 and P2 receptor activation.  相似文献   

14.
In addition to direct bactericidal activities, such as phagocytosis and generation of reactive oxygen species (ROS), neutrophils can regulate the inflammatory response by undergoing apoptosis. We found that infection of human neutrophils with Mycobacterium tuberculosis (Mtb) induced rapid cell death displaying the characteristic features of apoptosis such as morphologic changes, phosphatidylserine exposure, and DNA fragmentation. Both a virulent (H37Rv) and an attenuated (H37Ra) strain of Mtb were equally effective in inducing apoptosis. Pretreatment of neutrophils with antioxidants or an inhibitor of NADPH oxidase markedly blocked Mtb-induced apoptosis but did not affect spontaneous apoptosis. Activation of caspase-3 was evident in neutrophils undergoing spontaneous apoptosis, but it was markedly augmented and accelerated during Mtb-induced apoptosis. The Mtb-induced apoptosis was associated with a speedy and transient increase in expression of Bax protein, a proapoptotic member of the Bcl-2 family, and a more prominent reduction in expression of the antiapoptotic protein Bcl-x(L). Pretreatment with an inhibitor of NADPH oxidase distinctly suppressed the Mtb-stimulated activation of caspase-3 and alteration of Bax/Bcl-x(L) expression in neutrophils. These results indicate that infection with Mtb causes ROS-dependent alteration of Bax/Bcl-x(L) expression and activation of caspase-3, and thereby induces apoptosis in human neutrophils. Moreover, we found that phagocytosis of Mtb-induced apoptotic neutrophils markedly increased the production of proinflammatory cytokine TNF-alpha by human macrophages. Therefore, the ROS-dependent apoptosis in Mtb-stimulated neutrophils may represent an important host defense mechanism aimed at selective removal of infected cells at the inflamed site, which in turn aids the functional activities of local macrophages.  相似文献   

15.
Subsidence of inflammation and clinical recovery in experimental autoimmune encephalomyelitis (EAE) is postulated to involve apoptosis of inflammatory cells. To test this concept, we examined the effects of overexpressing the long form of human FLICE-inhibitory protein, a potent inhibitor of death receptor-mediated apoptosis, in myelin oligodendrocyte glycoprotein-induced EAE in DBA/1 mice. We found that overexpression of the long form of human FLICE-inhibitory protein by retroviral gene transfer of hemopoietic stem cells led to a clinically more severe EAE in these mice compared with control mice receiving the retroviral vector alone. The exacerbated disease was evident by an enhanced and prolonged inflammatory reaction in the CNS of these animals compared with control mice. The acute phase of EAE was characterized by a massive infiltration of macrophages and granulocytes and a simultaneous increase in TNF-alpha production in the CNS. In the chronic phase of the disease, there was a prolonged inflammatory response in the form of persistent CD4(+) T and B cells in the CNS and a peripheral Th1 cytokine bias caused by elevated levels of IFN-gamma and reduced levels of IL-4 in the spleen. Our findings demonstrate that death receptor-mediated apoptosis can be important in the pathogenesis of EAE and further emphasize the need for effective apoptotic elimination of inflammatory cells to achieve disease remission.  相似文献   

16.
Because the precise immunopathological events occurring in appendicitis are not completely understood, possible local production of endothelin-1 (ET-1) in human appendix was investigated. We used immunohistochemistry and in situ hybridization to detect the presence, distribution, and phenotype of ET-1-positive cells and prepro-ET-1 (pp-ET-1) mRNA-expressing cells. ET-1-positive stromal cells and pp-ET-1 mRNA-expressing cells were detected with different distributions and relative frequencies in normal control appendix, histologically normal appendix, and inflamed appendix. Six of 20 histologically normal appendixes from patients with a clinical diagnosis of acute appendicitis had many ET-1-positive stromal cells and high pp-ET-1 mRNA expression, similar to inflamed appendix. Forty percent of the pp-ET-1 mRNA-expressing cells were neutrophils, and the other positive cells were mast cells and macrophages. We suggest that local production of ET-1 by neutrophils and other inflammatory cells could be a molecular sign of focal inflammation in histologically normal appendixes and that ET-1 could be implicated, with other cytokines, in the pathogenesis of appendicitis by inducing appendiceal ischemia through vasoconstriction.  相似文献   

17.
Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.  相似文献   

18.
Midkine (MK) is a multifunctional heparin-binding protein and promotes migration of neutrophils, macrophages, and neurons. In the normal mouse kidney, MK is expressed in the proximal tubules. After renal ischemic reperfusion injury, its expression in proximal tubules was increased. Immediate increase of MK expression was found when renal proximal tubular epithelial cells in culture were exposed to 5 mM H(2)O(2). Histologically defined tubulointerstitial damage was less severe in MK-deficient (Mdk(-/-)) than in wild-type (Mdk(+/+)) mice at 2 and 7 days after ischemic reperfusion injury. Within 2 days after ischemic injury, inflammatory leukocytes, of which neutrophils were the major population, were recruited to the tubulointerstitium. The numbers of infiltrating neutrophils and also macrophages were lower in Mdk(-/-) than in Mdk(+/+) mice. Induction of macrophage inflammatory protein-2 and macrophage chemotactic protein-1, chemokines for neutrophils and macrophages, respectively, were also suppressed in Mdk(-/-) mice. Furthermore, renal tubular epithelial cells in culture expressed macrophage inflammatory protein-2 in response to exogenous MK administration. These results suggested that MK enhances migration of inflammatory cells upon ischemic injury of the kidney directly and also through induction of chemokines, and contributes to the augmentation of ischemic tissue damage.  相似文献   

19.
The soluble mediators and/or mechanisms involved in immunosuppression in tumor-bearing hosts are not well characterized, although macrophages have long been recognized as major participants. We have investigated the role of lipocortin I, a phospholipid-binding protein, in macrophage-mediated immunosuppression in tumor-bearing mice. Proliferation of splenic lymphocytes in response to the mitogens (PHA, Con A, LPS, and PWM) was severely suppressed in tumor (Sqc-NH-1 carcinoma)-bearing mice. This immunosuppression was associated with a decrease in T and B lymphocytes and an increase in macrophages in these spleens. Mac-2+ macrophages were found only in spleens from tumor-bearing mice. Splenic macrophages from tumor-bearing, but not normal, mice were responsible for this immunosuppression, as revealed by negative and positive selection experiments. The levels of lipocortin I mRNA expression were markedly increased in peripheral blood cells from tumor-bearing mice as compared with those from normal mice. Lipocortin I mRNA was strongly induced in splenic mononuclear cells from tumor-bearing mice. Furthermore, these cells displayed increased expression of lipocortin I protein, as judged by Western blot analysis with polyclonal anti-lipocortin I serum. Some nonimmune organs such as the heart, submaxillary gland, muscle, and bladder also displayed increased levels of lipocortin I mRNA expression in tumor-bearing mice. Mac-2+ macrophages among the splenic mononuclear cells in tumor-bearing mice expressed lipocortin I mRNA, as judged by negative and positive selection experiments. Most of these Mac-2+ macrophages also had Mac-1 and Mac-3 Ag. Lipocortin I protein was increased in the serum of tumor-bearing mice as compared with normal mice. The culture supernatants of splenic cells from tumor-bearing mice suppressed the mitogenic responses of splenic cells from normal mice, and addition of anti-lipocortin I antiserum inhibited this suppression. Furthermore, recombinant mouse lipocortin I suppressed mitogenic responses of splenic cells from normal mice. In summary, Mac-2+ macrophage-derived lipocortin I was largely involved in immunosuppression in tumor-bearing mice.  相似文献   

20.
Interactions between CD47 and thrombospondin reduce inflammation   总被引:4,自引:0,他引:4  
CD47 on the surface of T cells was shown in vitro to mediate either T cell activation or, in the presence of high amounts of thrombospondin (TSP), T cell apoptosis. We report here that CD47-deficient mice, as well as TSP-1 or TSP-2-deficient mice, sustain oxazolone-induced inflammation for more than four days, whereas wild-type mice reduce the inflammation within 48 h. We observe that prolonged inflammation in CD47-, TSP-1-, or TSP-2-deficient mice is accompanied by a local deficiency of T cell apoptosis. Finally, we show that upon activation normal T cells increase the expression of the proapoptotic Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein) and undergo CD47-mediated apoptosis. This finding is consistent with our previous demonstration of a physical interaction between BNIP3 and CD47 that inhibits BNIP3 degradation by the proteasome, sensitizing T cells to CD47-induced apoptosis. Overall, these results reveal an important role in vivo for this new CD47/BNIP3 pathway in limiting inflammation by controlling the number of activated T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号