首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Regulation of passive potassium ion transport by the external calcium concentration and temperature was studied on cell cultures of 3T3 mouse cells and their DNA-virus transformed derivatives. Upon lowering of external calcium concentration, passive potassium efflux generally exhibits a sharp increase at about 0.1mm. The fraction of calcium-regulated potassium efflux is largely independent of temperature in the cases of the transformed cells, but shows a sharp increase for 3T3 cells upon increasing temperature above 32°C. In the same range of temperature, the 3T3 cells exhibit the phenomenon of high-temperature inactivation of the residual potassium efflux at 1mm external calcium. At comparable cellular growth densities, the transformed cell lines do not show high-temperature inactivation of residual potassium efflux. These results are consistent with the notion of a decisive role of the internal K+ concentration in the cell-density dependent regulation of cell proliferation. In particular, the growth-inhibiting effect of lowering the external Ca2+ concentrations is considered as largely due to a rise of passive K+ efflux and a subsequent decrease of internal K+ concentration. The experimental data on the Ca2+ dependence of passive K+ flux are quantitatively described by a theoretical model based on the constant field relations including negative surface charges on the external face of the membrane, which cooperatively bind Ca2+ ions and may concomitantly undergo a lateral redistribution. The present evidence is consistent with acidic phospholipids as representing these negative surface charges.This work is dedicated to the memory of Max Delbrück (deceased March 10, 1981), in whose laboratory in 1966 the earlier version of the present theoretical model was developed by one of the authors.  相似文献   

2.
External ATP causes a rapid increase in passive permeability to nucleotides and phosphate esters in transformed cell lines, such as 3T6 mouse fibroblasts. However, untransformed lines, such as 3T3, do not show a similar sensitivity to external ATP. Ca2+ inhibits permeabilization, but only at concentrations approaching those of external ATP. In contrast, La3+ and Tb3+ inhibit ATP-dependent permeabilization at one-fifth the concentration of external ATP. Considering reports that lanthanides can substitute for calcium ion in many enzymatic reactions, often with a higher affinity, it would appear that Ca2+ plays a specific role in the maintenance of a passive membrane permeability barrier and in opposing the effects of external ATP.Other data suggest a regulatory role for the Ca2+-calmodulin complex in the permeabilization process. Trifluoperazine, chlorpromazine and W-7, compounds which inhibit cellular functions dependent on the Ca2+-calmodulin complex, are able to enhance the effect of external ATP. Thus, a dramatic stimulation of nucleotide permeability occurs with concentrations of external ATP and inhibitor that are ineffective when added alone. Calmodulin antagonists and low concentrations of external ATP increased membrane permeability to Na+ and K+ as was previously shown for permeabilization with ATP alone. Earlier studies have shown that energy inhibitors which reduce intracellular ATP levels greatly increase the sensitivity of transformed cells to external ATP. However, the Ca2+-calmodulin antagonists used in the present study exert their effects at concentrations which do not alter intracellular ATP levels.  相似文献   

3.
Cell envelope vesicles, prepared from Halobacterium halobium, were loaded with 3 M KCl suspended in 3 M NaCl, and the loss of K+ was followed at various temperatures. The Arrhenius plot of the K+-efflux rates shows a break at 30°C, with higher energy of activation above the break. This temperature dependence is consistent with earlier studies of chain motions in liposomes prepared from isolated lipids. The efflux of K+ is more rapid with increasing pH between pH 5 and 7. Since these vesicles do not respire under the experimental conditions it was expected that the K+-efflux data would be related to the passive permeability of the membranes to K+. The apparent K+ permeability at 30°C is 1–2· 10?10 cm·?1. This value corresponds to a 5-h half-life for retained K+ in the envelope vesicles and to a probably much longer half-life in whole cells. The previously observed ability of Halobacterium to retain K+ in the absence of metabolism can thus be explained solely by the permeability characteristics of the membranes.  相似文献   

4.
Abstract Changes in the net uptake rate of K+ and in the average tissue concentration of K+ were measured over 14 d in response to changes in root temperature with oilseed rape (Brassica napus L. cv. Bien venu) and barley (Hordeum vulgare L. cv. Atem). Plants were grown in flowing nutrient solutions containing 2.5 mmol m?3 K+ and were acclimatized over 49 d (rape) or 28 d (barley) to low root temperature (5°C) prior to steady–state treatments at root temperatures between 3 °C and 25 °C, with common air temperature. Uptake of K+ was monitored continuously over 14 d and nitrogen was supplied as NH4++ NO?3 or NH+4 or NO?3. Unit absorption rates of K+ increased with time and with root temperature up to Day 4 or 5 following the change in root temperature. Thereafter they usually approached steady-state, with Q10? 2.0 between 7 °C and 17°C, although rates became similar between 7 °C and 13°C. Uptake of K+ by rape plants was invariably greater under NO?3 nutrition compared with NH+4. The percentage K+ in the plant dry matter increased with temperature from 2% at 3 °C to 4% at 25 °C in rape, but there was less effect of temperature on the average concentrations of K+ in the plant fresh weight or plant water content. Concentrations of K+ in the leaf water fraction of rape plants decreased with increasing root temperature, but in barley they increased with increasing root temperature. Concentrations of K+ in the root water fraction were relatively stable with respect to root temperature. The results are discussed in terms of compensatory changes in K+ uptake following a change in root temperature and the relationships between growth, shoot: root ratio and K+ composition of the plant.  相似文献   

5.
Human lymphocytes were equilibrated for 48 hours at 5-6 mM K+ex over a range of temperatures between 0 and 37°C, and at 5°C over a range of external K+ levels between 0 and 32 mM. Cell K+ and Na+ contents are normal between 37 and 10′. Below 10′ there is a critical thermal transition in ion contents centering around 3°C. This and the steep sigmoidal isotherms of K+ and Na+ at 5°C confirm the cooperative nature of ion exchange. At 0′, cell K+ is maintained at a concentration that is seven to eight times that of the external medium. Isotopic K+ influx shows smaller, rapidly-exchanging, and larger, slowly-exchanging fractions. The latter, which correspond to the saturable, sigmoidal components of cell K+, are slowed by decreasing temperature. Although there is a critical temperature transition of K+-Na+ exchange, there is no corresponding transition for isotopic K+ exchange, which has an activation energy of 11.6 kcal/mole. The combined ion content and flux data are readily understood by reference to two major concepts of the association-induction hypothesis: that of rapid solute exclusion from cell water existing in a state of polarized multilayers, and that of solute accumulation limited by adsorption onto and desorption from fixed anionic sites that interact with one another in a critical, cooperative fashion.  相似文献   

6.
The NMR (nuclear magnetic resonance) method of Conlon and Outhred (1972) was used to measure diffusional water permeability of the nodal cells of the green alga Chara gymnophylla. Two local minima at 15 and 30°C of diffusional water permeability (P d ) were observed delimiting a region of low activation energy (E a around 20 kJ/mol) indicative of an optimal temperature region for membrane transport processes. Above and below this region water transport was of a different type with high E a (about 70 kJ/mol). The triphasic temperature dependence of the water transport suggested a channel-mediated transport at 15–30°C and lipid matrix-mediated transport beyond this region. The K+ channel inhibitor, tetraethylammonium as well as the Cl channel inhibitor, ethacrynic acid, diminished P d in the intermediate temperature region by 54 and 40%, respectively. The sulfhydryl agent p-(chloromercuri-benzensulfonate) the water transport inhibitor in erythrocytes also known to affect K+ transport in Chara, only increased P d below 15°C. In high external potassium (`K-state') water transport minima were pronounced. The role of K+ channels as sensors of the optimal temperature limits was further emphasized by showing a similar triphasic temperature dependence of the conductance of a single K+ channel also known to cotransport water, which originated from cytoplasmic droplets (putatively tonoplast) of C. gymnophylla. The minimum of K+ single channel conductance at around 15°C, unlike the one at 30°C, was sensitive to changes of growth temperature underlining membrane lipid involvement. The additional role of intracellular (membrane?) water in the generation of discontinuities in the above thermal functions was suggested by an Arrhenius plot of the cellular water relaxation rate which showed breaks at 13 and 29°C. Received: 12 August 1998/Revised: 13 November 1998  相似文献   

7.
Cell potentials and K+ (86Rb) influx were determined for corn roots over a wide range of external K+ activity (K°) under control, anoxic, and uncoupled conditions. The data were analyzed using Goldman theory for the contribution of passive influx to total influx. For anoxic and uncoupled roots the K+ influx shows the functional relationship with K° predicted with constant passive permeability, although K+ permeability in uncoupled roots is about twice that of anoxic roots. In control roots the equation fails to describe K+ influx at low K°, but does so at high K°, with a gradual transition over the region where the electrical potential becomes equal to the equilibrium potential for K+ (ψ = EK). In the low K° range, where net K+ influx is energetically uphill, participation of an energy-linked K+ carrier is indicated. In the high K° range, K+ influx becomes passive down the electrical gradient established by the cell potential. Since the cell potential includes a substantial electrogenic component, anoxia or uncoupling reduces passive influx.  相似文献   

8.
Decreased serum concentrations that substantially alter the growth of normal 3T3 cells alter neither the active and non-active components of unidirectional 86Rb+ influx nor the intracellular K+ content when compared with cells in exponential growth. Thus the changes in K+ transport (measured with 86Rb+ as an analogue for K+ movements) that occur on density-dependent growth inhibition of the mouse 3T3 cell are not mimicked by serum deprivation of the cells before density inhibition.  相似文献   

9.
The uptake of ouabain-sensitive 86Rb+ uptake measured at 5 min and the uptake measured at 60 min was 4.5- and 2.7-fold greater respectively for SV40 transformed 3T3 cells compared to 3T3 cells during the late log phase of growth. This uptake, however, varied markedly with cell growth. Ouabain-sensitive 86Rb+ uptake was found to be a sensitive indicator of protein synthesis as measured by total protein content. Cessation of cell growth as measured by total protein content was associated with a decline in ouabain-sensitive 86Rb+ uptake in both cell types. This increased ouabain-sensitive cation transport was reflected in increased levels of (Na+ + K+)-ATPase activity for SV40 3T3 cells, which showed a 2.5-fold increase V but the same Krmm as 3T3 cells.These results are compared with the results of related work. Possible mechanisms for these effects are discussed and how changes in cation transport might be related to alterations in cell growth.  相似文献   

10.
Abstract Lolium perenne L. cv. S23 was grown in flowing culture solution, pH 5, in which the concentrations of NH4+, NO3? and K+ were frequently monitored and adjusted to set values. In a pre-experimental period, plants were acclimatized to a regime in which roots were treated at 5°C with shoots at 25°C. The root temperature was then changed to one of the following, 3, 7, 9, 11, 13, 17 or 25°C, while air temperature remained at 25°C. When root temperature was increased from 5X, the relative growth rate of roots increased immediately while that of shoots changed much less for a period of approximately 9 d (phase 1). Thus, the root: shoot ratio increased, but eventually approached a new, temperature-dependent, steady value (phase 2). The fresh: freeze-dried weight ratio (i.e. water content) in shoots (and roots) increased during the first phase of morphological adjustment (phase 1). In both growth phases and at all temperatures, plants absorbed more NH4+ than NO4+, the tendency being extreme at temperatures below 9° where more than 85% of the N absorbed was NH4+. Plants at different root temperatures, growing at markedly different rates, had very similar concentrations of total N in their tissues (cells) on a fresh weight basis, despite the fact that they derived their N with differing preference for NH4+. Specific absorption rates for NH4+, NOx?, K+ and H2PO4? showed very marked dependence on root temperature in phase 1, but ceased to show this dependence once a steady state root: shoot ratio had been established in phase 2. The results indicate the importance of relative root size in determining ion fluxes at the root surface. At higher temperatures where the root system was relatively large, ‘demand’ per unit root was low, whereas at low temperatures roots were small relative to shoots and ‘demand’ was high enough to offset the inhibitory effects of low temperature on transport processes.  相似文献   

11.
Abstract Effects of temperature on the ionic relations and energy metabolism of Chara corallina were investigated. Measurements were made of the ionic content, tracer ion fluxes, and photosynthetic and dark CO2 fixation in isolated cells, and of O2 exchange in photosynthesis and respiration in isolated shoot apices. The total intracellular concentration of K+, Na+ and Cl? was the same in cells held for 5 days in non-growing medium at 15°C (the growth temperature) as in those held at 25°C or 5°C. The tracer influx in the light of all ions tested (Rb+, Na+, CH3NH3+, Cl? and H2PO4?) was lower at 5°C than at 15°C in experiments in which cells were subjected to 5°C for less than 24 h in toto. The influx at 25°C was greater than that at 15°C for H2PO?4, there was no difference between the two temperatures for Na+, while the influx at 25°C was less than that at 15°C for Cl?, Rb+ and CH3NH3+ For Cl? and H2PO?4 similar results were found in later experiments with cells grown at 20—23°C. Photosynthetic CO2 fixation and O2 evolution, and respiratory O2 uptake, are greater at 25°C, and lower at 5°C, than they are at the growth temperature of 15°C. In longer-term pretreatments at the different temperatures, tracer Cl? influx at 15°C and particularly at 25°C were lower than in short-term experiments, while the influx at 5°C was higher. It was concluded from these experiments, and from previous data on H+ free energy differences across the plasmalemma, that (1) the maintenance of internal ion concentrations involves a close balancing of influx and efflux of K+, Na+ and Cl? at all experimental temperatures; (2) the regulation of the tracer fluxes of the ions is kinetic rather than thermodynamic and (3) that the tracer fluxes at low temperatures are not restricted by the rate at which respiration or photosynthesis can supply energy to them.  相似文献   

12.
Erythrocyte membrane sulfhydryl groups and cation permeability   总被引:8,自引:0,他引:8  
Reaction of the slowly penetrating organic mercurial compound parachloromercuribenzene sulfonate (PCMBS) with intact erythrocytes has been characterized. Addition of concentrations of PCMBS which result in binding within the interior of the membrane of more than 1.9 × 10?18 moles/cell produces alterations in Na+ and K+ permeability, but does not affect choline permeability. However, the increased cation permeability is observed only after a lag period of over two hours. After ten hours, a spontaneous slow “recovery” to normal rates of K+ leakage occurs at 25°C but not at 2°C. Subsequent to the effects on cation balance, increasing degrees of hemolysis occur, interpreted as colloid osmotic lysis. The relationships between the binding of the agent and its effects are as follows: a small, rapid initial uptake does not affect cation permeability; the subsequent slower uptake is associated with increased leakage of K+ and Na+; and the recovery at 25°C is associated with desorption of about half of the PCMBS due to competition by soluble thiol substances released into the medium from the cells. Desorption and “recovery” can be mimicked at any time by addition of small amounts of protein in the medium. The half of the PCMBS that cannot be desorbed is assumed to be bound by the hemoglobin inside the cell. The sulfhydryl groups involved in control of cation permeability constitute only a fraction of the total within the membrane (4–18%). They are located within the interior of the membrane separated from the medium and from the interior of the cell by diffusion barriers to PCMBS.  相似文献   

13.
The transport of selected neutral and cationic amino acids has been studied in Balb/c 3T3, SV3T3, and SV3T3 revertant cell lines. After properly timed preincubations to control the size of internal amino acid pools, the activity of systems A, ASC, L, and Ly+ has been discriminated by measurements of amino acid uptake (initial entry rate) in the presence and absence of sodium and of transportspecific model substrates. L-Proline, 2-aminoisobutyric acid, and glycine were primarily taken up by system A; L-alanine and L-serine by system ASC; L-phenylalanine by system L; and L-lysine by system Ly+ in SV3T3 cells. L-Proline and L-serine were also preferential substrates of systems A and ASC, respectively, in 3T3 and SV3T3 revertant cells. Transport activity of the Na+-dependent systems A and ASC decreased markedly with the increase of cell density, whereas the activity of the Na+-independent systems L and Ly+remained substantially unchanged. The density-dependent change in activity of system A occurred through a mechanism affecting transport maximum (Vmax) rather than substrate concentration for half-maximal velocity (Km). Transport activity of systems A and ASC was severalfold higher in transformed SV3T3 cells than in 3T3 parental cells at all the culture densities that could be compared. In SV3T3 revertant cells, transport activity by these systems remained substantially similar to that observed in transformed SV3T3 cells. The results presented here add cell density as a regulatory factor of the activity of systems A and ASC, and show that this control mechanism of amino acid transport is maintained in SV40 virus-transformed 3T3 cells that have lost density-dependent inhibition of growth, as well as in SV3T3 revertant cells that have resumed it.  相似文献   

14.
Lolium perenne L. cv. 23 (perennial ryegrass) plants were grown in flowing solution culture and acclimatized over 49 d to low root temperature (5°C) prior to treatment at root temperatures of 3, 5, 7 and 9°C for 41 d with common air temperature of 20/15°C day/night and solution pH 5·0. The effects of root temperature on growth, uptake and assimilation of N were compared with N supplied as either NH4 or NO3 at 10 mmol m?3. At any given temperature, the relative growth rate (RGR) of roots exceeded that of shoots, thus the root fraction (Rf) increased with time. These effects were found in plants grown with the two N sources. Plants grown at 3 and 5°C had very high dry matter contents as reflected by the fresh weight: freeze-dried weight ratio. This ratio increased sharply, especially in roots at 7 and 9°C. Expressed on a fresh weight basis, there was no major effect of root temperature on the [N] of plants receiving NHJ but at any given temperature, the [N] in plants grown with NHJ was significantly greater than in those grown with NO3. The specific absorption rate (SAR) of NH+4 was greater at all temperatures than SAR-NO3. In plants grown with NH+, 3–5% of the total N was recovered as NH+4, whereas in those grown with NO?3 the unassimilated NO?3 rose sharply between 7 and 9°C to become 14 and 28% of the total N in shoots and roots, respectively. The greater assimilation of NH+4 lead to concentrations of insoluble reduced N (= protein) which were 125 and 20% greater, in roots and shoots, respectively, than in NO?3-grown plants. Plants grown with NH+4 had very much greater glutamine and asparagine concentrations in both roots and shoots, although other amino acids were more similar in Concentration to those in NO?3 grown plants. It is concluded that slow growth at low root temperature is not caused by restriction of the absorption or assimilation of either NH+4 or NO?3. The additional residual N (protein) in NH+4 grown plants may serve as a labile store of N which could support growth when external N supply becomes deficient.  相似文献   

15.
The transmembrane potential of cells from a continuous cell line (BHK-21) has been investigated by a combination of electrophysiological and flame photometric techniques. The ratio of sodium permeability to potassium permeability (PNa/PK) determined from membrane potentials recorded at varying external potassium concentrations was 0.082; from membrane potential measurements and the intracellular sodium and potassium concentrations of cells in 6.8 mM K+ media the value was 0.075. The PNa/PK ratio was not temperature dependent. Dinitrophenol (1 mM) did not significantly alter the membrane potential of cells incubated for one hour with the inhibitor. However, iodoacetate (1 mM) and sodium fluoride (30 mM) caused a significant depolarization during a one-hour incubation. Measurements of sodium and potassium concentrations during incubation at 4°C showed a decrease in internal potassium and an increase in internal sodium accompanied by a decreased membrane potential. Ion concentrations and membrane potentials were measured in cells recovering at 37°C following 24 hours at 4°C. Membrane potentials in excess of EK during the first ten minutes of recovery may indicate electrogenic pumping.  相似文献   

16.
The early effects of penconazole (PCZ) at relatively high concentration (10?4 to 5 × 10?4 M) on changes in pH and in titratable acidity of the medium, transmembrane electrical potential difference (Em), electrolyte leakage and cell morphology were investigated in Egeria densa leaves. At the lowest (10?4 M) concentration and in the presence of a very low (10 μM) K+ concentration, triazole induced an early, moderate hyperpolarization of Em, associated with a decrease of net K+ uptake, suggesting some increase in the passive permeability to K+. This Em hyperpolarization was no longer detectable at high (2 mM) K+out concentration. At high PCZ concentrations (3 × 10?4 M and 5 × 10?4 M) the early hyperpolarization detectable in the presence of a low K+out concentration became transient, and was followed by a marked depolarization. PCZ, at these concentrations, suppressed acidification of the medium, stimulated electrolyte leakage and, in the mesophyll cells, induced some shrinking of the cytoplasm and its disconnection from the cell walls. These results are interpreted as due to an early effect of this triazole leading to the disorganization of the plasma membrane.  相似文献   

17.
Arrhenius diagrams of K+ pump fluxes measured between 15°C and 41°C were discontinuous in high K+ but not in low K+ sheep red cells. Exposure of low K+ cells to anti-L caused a bimodal temperature response of K+ pump flux with a transition temperature, Tc, similar to that found in high K+ cells but with comparatively higher activation energies above Tc.  相似文献   

18.
The development of peritrichous flagella and, consequently, swarming of Vibrio alginolyticus depend on a complex relationship between temperature, salt concentrations and pH. At temperatures above 28°C V. alginolyticus did not develop peritrichous flagella unless certain minimal concentrations of NaCl are present: the higher the temperature, the higher the NaCl concentrations required for peritrichous flagella synthesis. This requirement for NaCl at high temperatures is much more pronounced at pH 9 than at pH 6. High temperatures and low concentrations of NaCl also inhibited swarming of cells already armed with peritrichous flagella. Other cations, such as Li+, K+ and Mg2+, replaced NaCl only at temperatures below 28°C.  相似文献   

19.
Cells were grown as primary monolayer cultures from kidney cortex of guinea pigs (nonhibernators), hamsters and ground squirrels (both hibernating species). When plates of cells were placed at 5 °C, cells of guinea pigs lost 37% of their K+ in 2 h and those of the hibernator lost about 10%.Uptake of 42K into the cells exhibited a simple, single exponential time course at both temperatures. Unidirectional efflux of K+ was equal to K+ influx in all cultures at 37 °C and, within limits of error, in hibernator cells at 5 °C. Efflux was 3- to 5-fold greater than influx in guinea pig cells at 5 °C.After 2 h in the cold the ouabain-sensitive K+ influx remaining (7–15% of that at 37 °C) was about the same in the cells of the 3 species. Cells from active hamsters and from hibernating ground squirrels, however, exhibited significantly greater pump activity after 45 min in the cold (19 and 14%, respectively). The stimulation of K+ influx by increasing [K+]o did not show an increase in Km+ at 5 °C in cells of guinea pigs and ground squirrels. Lowering [K+]c and/or raising [Na+]c by treatment in low- and high-K+ media caused only slight stimulation of K+ influx, except in cells of ground squirrels at 5 °C in which the stimulation was at least 11-times greater than at 37 °C or in cells of guinea pigs at either temperature.This altered kinetic response of K+ transport to cytoplasmic ion stimulation with cooling accounted for about one-third of the improved regulation of K+ at 5 °C in ground squirrel cells; the other two-thirds was attributable to a greater decrease in K+ leak with cooling. The inhibition of active transport by cold in all 3 species was much less severe than that previously seen in any (Na+ + K+)-ATPase of mammalian cells.  相似文献   

20.
Uptake of Rb+ was investigated in 12-day-old intact plants of sunflower (Helianthus annum L. var. californicus) which had been cultivated or pretreated in nutrient solutions with various K+ concentrations. The relationship between Rb+ influx and K+ concentration of the roots indicated regulation of Rb+ uptake by allosteric inhibition of the uptake mechanism. A constant passive influx occurred contemporaneously with the active uptake as shown by experiments at 0°C or with 2,4-dinitrophenol. The allosteric regulation of ion carrier activity occurred after a time lag of up to 1 h after the change of external solution. In experiments involving Rb+ treatments of K+-deficient plants, the synthesis of carriers for transport of Rb+ could be demonstrated. A model including allosteric regulation of Rb+ uptake in roots is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号