首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A mathematical model of spike train transmission by identified molluscan neurons was obtained by Wiener analysis. Poisson-distributed sequences of near-threshold stimuli were used as input trains for model construction and testing. Assuming that the error of describing responses of the synapse-neuron system purely by mean outflow frequency is 100%, addition of a linear component to the equation of the model reduces this error to 25%, and addition of a term allowing for nonlinear properties of the system reduces it to 16%. Comparison of the standard error of predicted responses of the model to testing stimulus trains and of responses of a real neuron to these same trains showed that the prediction error with allowance for nonlinear properties does not exceed 21%. Choice of adequate criteria for comparing model and experimental results is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 49–54, January–February, 1984.  相似文献   

3.
4.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

5.
S V Minina 《Biofizika》1986,31(5):919-921
In all investigated neurons of snail Helix pomatia an injection of cAMP evoked depolarization and spike generation. The possible experimental mistakes leading to another types of response are considered.  相似文献   

6.
Operculin is a glycine-rich protein present as the major component of gastropod operculae. X-ray and infrared studies of operculins lead to the conclusion that operculae contain antiparallel-chain pleated sheets oriented so that the plane of the pleated sheet is parallel to the plane of the operculum, which is a flat ovoidal or circular sheet. Partial hydrolysis gives evidence of repeating Asp-Gly-Asp and Asp-Ala-Asp sequences as well as of regions rich in Gly.  相似文献   

7.
This review is focused on the analysis of research data obtained in one of the models of conditioned reflex, heterosynaptic facilitation (HSF), in the molluscan nervous system. Our experiments were performed on identified giant command neurons LS1 and PS1 of the freshwater snail Planorbarius corneus. HSF was elicited during the electrical stimulation of two nerves: pallial (the analog of unconditioned stimulation — US) and one of the cerebral nerves (the analog of the conditioned stimulation — CS). The degree of HSF manifestation depended not on the intensity of the synaptic response of the giant neuron to US, but the efficacy of the connection between the pallial nerve and neurosecretory neurons surrounding the command neuron of the mesocerebrum. It is demonstrated that HSF develops due to the diffuse neurohumoral action of serotonin (5-hydroxytryptamine — 5-HT) on the postsynaptic structures, but not as a result of local synaptic action on the presynaptic mechanism. Approximately 70% of US cases of 5-HT application induced a four- to six-fold increase in amplitude of the excitatory postsynaptic potential (EPSP) and acetylcholine (ACh) response. Both responses are N-cholinergic and depend on the membrane permeability to Na+ and K+. In 30% of the cases, ACh response diminished simultaneously with EPSP increase. The 5-HT effect on EPSP and ACh responses were mimicked by the action of phosphodiersterase blockers and adenylate cyclase activators. Thus, the activation of the adenylate cyclase system following 5-HT action facilitates the postsynaptic mechanism underlying HSF formation in command neurons of Planorbarius corneus. Dopamine (DA) and noradrenaline (NA) blocked EPSP and simultaneously increased the amplitude of ACh response. These monoamines were also blocked HSF. The wash-out of catecholamines following HSF blockade enhanced the restoration and subsequent prolongation of synaptic facilitation. It is thus concluded that DA or NA may control the HSF intensity and duration under natural conditions of the nervous system in the molluscs.Neirofiziologiya/Neurophysiology, Vol. 25, No. 3, pp. 224–232, May–June, 1993.  相似文献   

8.
The effects of Ca2+ and vitamin E (-tocopherol) on acetylcholine (Ach)-induced Cl currents in LP11 and RBc4 neurons of the snail Helix pomatia have been studied. Injection of Ca2+ into the cells and application of vitamin E (10–5 mole/liter) induced the appearance of potentiation of Ach-induced currents in membrane parts more remote from the axon than the Ach-sensitive regions in the control. The Hill coefficient (n) for such Ach receptors was equal to 0.8, unlike 1.8 for Ach receptors active in the control. Arachidonic acid (10–5 mole/liter) and phorbol ester TPA (10–6 mole/liter) inhibited Ach responses, while oleoylacetyglycerol (10–6 mole/liter) produced no effect. Calmidazolium (10–6 mole/liter) decreased the effects of Ca2+ and vitamin E on Ach responses, while nordihydroquiaretic acid (5 · 10–6 mole/liter) enhanced the modulating effect of vitamin E and weakened that of arachidonic acid. It is suggested that the expression of Ach receptors activated by Ca2+ and vitamin E is mediated through posttranslational mechanisms, since cycloheximide and actinomycin D, inhibitors of protein synthesis, did not influence the effects of C2+ and vitamin E. The mechanisms responsible for the stimulating effects of Ca2+ and vitamin E are discussed.Translated from Neirofiziologiya, Vol. 25, No. 1, pp. 31–39, January–February, 1993.  相似文献   

9.
A model describing slow oscillations of membrane potential in molluscan neurons is suggested. It is based on the view that the depolarization phase is due to the slow calcium current, whereas the hyperpolarization phase is due to the potassium current activated by intracellular Ca ions. It is shown that depending on values of the parameters of the model there are three possible types of electrical activity of the neurons: stable membrane hyperpolarization up to the resting potential which is between ?49 and ?53 mV; slow oscillations of membrane potential from ?30 to ?60 mV, with a period of 12–17 sec, and stable membrane depolarization to between ?40 and ?30 mV, which may lead to the onset of stable rhythmic activity of these neurons. Dependence of the amplitude of the oscillations of potential on the extracellular concentration of Ca, K, and Na ions was calculated and agrees qualitatively with the experimental data of Barker and Gainer [4].  相似文献   

10.
11.
Central neurons ofLymnaea stagnalis exhibit, by the dne of a hyperpolarizing current pulse, a breaking-off of the rise of the membrane potential to the resting level. By using an electrical model of the membrane, this effect is accounted for by the activation of the fast outward current.  相似文献   

12.
An arrangement of paramyosin molecules in the polar part of molluscan thick filaments is proposed which accounts for the X-ray diffraction pattern of the smooth adductor muscle (other than the part ascribed to actin) and for the appearance of separated filaments in the electron microscope. The proposed structure is based on the PI arrangement of Cohen et al. (1971), and contains sets of parallel, equidistant molecules with successive molecules displaced along the molecular axis by 72 nm, which we call PI sheets. Every molecule belongs to two PI sheets which are nearly perpendicular. This array is not propagated throughout the filament, but is sheared periodically in the direction of the molecular (filament) axis by 2/5 X 72 nm. The shear occurs along parallel equidistant planes which are inclined to the PI sheets. The analysis of the X-ray data has been made possible by concentrating on those patterns from filaments in which the two sets of PI sheets appear to be mutually perpendicular, a condition brought about by bathing the muscle in aqueous acetone. In one set, there are four intermolecular spaces between shear planes (this appears to be true at least for the smooth adductors of Ostrea edulis, Crassostrea angulata and Mercenaria mercenaria). In the other set, the number varies with species and probably lies between eight and ten in the first two and appears to be six in the last named species. The known paracrystalline nature of paramyosin filaments suggests that this number, though dominant in one species, is not exactly constant.  相似文献   

13.
Experiments were carried out on neurons of the visceral complex of ganglia ofHelix pomatia. Application of strong hyperpolarizing stimuli ("electro-convulsive shock") throughan intracellular microelectrode led to dissociation of the original action potential into small components. Repetition of the "electro-convulsive shock" intensified these phenomena. Regular hyperpolarizing stimuli led to the formation of action potentials whose amplitude depended on the intensity and duration of the hyperpolarizing stimuli. The possibility that trigger zones are located on the soma membrane of molluscan neurons is discussed on the basis of the results.  相似文献   

14.
Galantamine is widely used for the treatment of Alzheimer’s disease. According to the generally accepted viewpoint, its therapeutic effect is based on inhibition of acetylcholinesterase (AChE) and potentiation of nicotinic receptors. Alternative molecular targets for galanatamine, namely, voltage-gated Ca2+ and K+ channels of the neuronal membrane, are also widely discussed in the current literature. The present study is devoted to the analysis of effects of galantamine on high-threshold Ca2+ currents (I Ca) and three different kinds of highthreshold K+ current, viz.: Ca2+-dependent K+ current (I C), delayed rectifier (I DR), and fast-inactivating K+ current (I Adepol). Experiments were conducted on molluscan neurons with the help of two-microelectrode voltageclamp technique. It was found that galantamine caused a fast, reversible and dose-dependent suppression of all types of high-threshold ionic currents. The maximal blocking effect of the alkaloid for I Ca, I C, and I DR, was 100%, while for I Adepol the maximal suppression was only 60%. The mean values of IC 50 for I C, I DR, I Adepol, and I Ca were 109, 237, 66, and 515 μ M, respectively, i.e., substantially higher than the corresponding values for the alkaloid-induced inhibition of AChE and potentiation of nicotinic receptors. It is concluded that the blockade of Ca2+ and K+ channels has little or no contribution to the therapeutic activity of galantamine.  相似文献   

15.
16.
17.
1. Intracellular recorclings were made from identified LP11, RBc4, D1 and E4 neurons in perioesophageal ganglionic ring with buccal ganglia of the mollusc Helix pomatia.2. The modulations of acetylcholine (ACh)-induced current by vitamin E in these neurons were investigated using two-microelectrode intracellular recorcling and voltage-clamp techniques.3. ACh receptors function on LP11 and RBc4 neurons was strongly regulated by intracellular calcium ions. For these ACh receptors application of 10−6 to 10−4 M vitamin E and calcium influx both induced an enhancement of the ACh-induced chloride current. Application of 10−5 to 5.10−5M arachidonic acid on the same identified LP11 and RBc4 neurons was shown to evoke a decrease of the ACh-induced chloride current.4. The elevation of calcium levels into D1 and E4 neurons induced a faint decrease of ACh-induced chloride current, but vitamin E and arachidonic acid were ineffective.5. The calmodulin inhibitor, chloropromazine (6.10−-5M), strongly inhibited the enhancing effect of calcium influx on ACh-induced chloride current in LP11 and RBc4 neurons, but it had a weak influence on the effect of vitamin E.6. The effect of vitamin E on surface distribution of functional ACh receptors in LP11 and RBc4 neurons was found.7. Application of 10−4 to 10−6 M vitamin E (DL-α-tocopherol) triggered mechanisms, which after a 5 to 45-min period lead to appearance of functional ACh receptors on the parts of neuronal soma, which were further from the axon.8. Arachidonic acid (vitamin F) evoked a disappearance of functional ACh receptors, which were activated by vitamin E.  相似文献   

18.
The effects of strychnine on Aplysia R2 neurons were evaluated using simultaneous intracellular recordings of the soma and axon potentials. 1 mM strychnine produced a slight enlargement of the somatic spike and a large increase of the axon spike duration. Following direct stimulation, the soma displayed depolarizing afterpotentials ( DAPs ) which might trigger extra-spikes, both produced electronically by long-lasting axon spikes. Cobalt suppressed both the axon spike lengthening and the somatic extra-spikes or DAPs , and induced large depolarizing shifts in the soma. The region of largest spike lengthening (proximal axon) had a large density of Ca channels. The different effects of strychnine on the soma and on the axon were assumed to result from a selective blockage of the V-dependent K channels which would predominate in the axon whereas Ca-activated K channels would predominate in the soma.  相似文献   

19.
Electrical activity of identified and unidentified neurons ofHelix pomatia was recorded intracellularly after incubation of the ganglia for 0.5, 1, and 2 h in ribonuclease (RNAse) solution. Histochemical and cytophotometric analysis showed that after 30 min no RNA could be found in any of the neurons studied or in the glia and neuropil of the ganglia. At these times of incubation action potentials and spontaneous and evoked postsynaptic potentials could be recorded in all the neurons studied. The response to microapplication of acetylcholine to the neuron soma or to its direct electrical stimulation remained the same as in the control. In the identified neurons the addition of RNAse and its subsequent action did not alter their electrogenesis even after incubation for 2 h. It is concluded that electrogenesis is not directly dependent on the RNA content in the neuron. The primary role of RNA is considered to be participation in the synthesis of the specific proteins responsible for synaptic transmission.I. M. Sechenov Institute of Physiology, First Medical Institute, Moscow. Faculty of Psychology, Moscow State University, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 423–428, July–August, 1972.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号