首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein S-palmitoylation, the most common lipid modification with the 16-carbon fatty acid palmitate, provides an important mechanism for regulating protein trafficking and function. The unique reversibility of protein palmitoylation allows proteins to rapidly shuttle between intracellular membrane compartments. Importantly, this palmitate cycling can be regulated by some physiological stimuli, contributing to cellular homeostasis and plasticity. Although the enzyme responsible for protein palmitoylation had been long elusive, DHHC family proteins, conserved from plants to mammals, have recently emerged as palmitoyl acyl transferases. Integrated approaches including advanced proteomics, live-cell imaging, and molecular genetics are beginning to clarify the molecular machinery for palmitoylation reaction in diverse aspects of cellular functions.  相似文献   

2.
Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.  相似文献   

3.
Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.  相似文献   

4.
Fluorescent proteins have proven to be excellent tools for live-cell imaging. In addition to green fluorescent protein (GFP) and its variants, recent progress has led to the development of monomeric red fluorescent proteins (mRFPs) that show improved properties with respect to maturation, brightness, and the monomeric state. This review considers green and red spectral variants, their paired use for live-cell imaging in vivo, in vitro, and in fluorescence resonance energy transfer (FRET) studies, in addition to other recent “two-color” advances including photoswitching and bimolecular fluorescence complementation (BiFC). It will be seen that green and red fluorescent proteins now exist with nearly ideal properties for dual-color microscopy and FRET.  相似文献   

5.
The cell, as the origin of health and disease, can be considered as a network of nanoscopic elements embedded in a microcosm of membrane-bounded compartments. Among nanoscopic elements, protein complexes stand out, because they initiate and direct all cellular processes. Striking progress in proteomics, molecular imaging and fluorescence nanoscopy induce me to envision a “Nanoscopic Medicine”, i.e. the direct imaging, functional analysis and repair of protein complexes and other nanoscopic elements. Here, I will discuss the fundament, requirements and prospects of nanoscopic medicine.  相似文献   

6.
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network.By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.  相似文献   

7.
8.
Fluorescent proteins from the green fluorescent protein family have become indispensable imaging tools for cell biology. A wide variety of these proteins were discovered in nonbioluminescent anthozoa in recent years. Some of them feature exciting new properties, with the possibility to alter their intensity and/or fluorescence color by irradiation with light of specific wavelengths. Fluorescent highlighter proteins enable many interesting applications based on regional optical marking in live cells and tissues. This review provides an overview of photoactivatable marker proteins, with a focus on EosFP, a protein that can be switched from green to red fluorescence by approximately 400-nm light. A variety of applications are presented to illustrate the versatility of EosFP in live-cell imaging.  相似文献   

9.
Fluorescent proteins from the green fluorescent protein family have become indispensable imaging tools for cell biology. A wide variety of these proteins were discovered in nonbioluminescent anthozoa in recent years. Some of them feature exciting new properties, with the possibility to alter their intensity and/or fluorescence color by irradiation with light of specific wavelengths. Fluorescent highlighter proteins enable many interesting applications based on regional optical marking in live cells and tissues. This review provides an overview of photoactivatable marker proteins, with a focus on EosFP, a protein that can be switched from green to red fluorescence by approximately 400-nm light. A variety of applications are presented to illustrate the versatility of EosFP in live-cell imaging.  相似文献   

10.
Imaging molecular interactions in living cells   总被引:3,自引:0,他引:3  
Hormones integrate the activities of their target cells through receptor-modulated cascades of protein interactions that ultimately lead to changes in cellular function. Understanding how the cell assembles these signaling protein complexes is critically important to unraveling disease processes, and to the design of therapeutic strategies. Recent advances in live-cell imaging technologies, combined with the use of genetically encoded fluorescent proteins, now allow the assembly of these signaling protein complexes to be tracked within the organized microenvironment of the living cell. Here, we review some of the recent developments in the application of imaging techniques to measure the dynamic behavior, colocalization, and spatial relationships between proteins in living cells. Where possible, we discuss the application of these different approaches in the context of hormone regulation of nuclear receptor localization, mobility, and interactions in different subcellular compartments. We discuss measurements that define the spatial relationships and dynamics between proteins in living cells including fluorescence colocalization, fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence lifetime imaging microscopy. These live-cell imaging tools provide an important complement to biochemical and structural biology studies, extending the analysis of protein-protein interactions, protein conformational changes, and the behavior of signaling molecules to their natural environment within the intact cell.  相似文献   

11.
12.
The lipids and proteins in eukaryotic cells are continuously exchanged between cell compartments, although these retain their distinctive composition and functions despite the intense interorganelle molecular traffic. The techniques described in this paper are powerful means of studying protein and lipid mobility and trafficking in vivo and in their physiological environment. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are widely used live-cell imaging techniques for studying intracellular trafficking through the exo-endocytic pathway, the continuity between organelles or subcompartments, the formation of protein complexes, and protein localization in lipid microdomains, all of which can be observed under physiological and pathological conditions. The limitations of these approaches are mainly due to the use of fluorescent fusion proteins, and their potential drawbacks include artifactual over-expression in cells and the possibility of differences in the folding and localization of tagged and native proteins. Finally, as the limit of resolution of optical microscopy (about 200 nm) does not allow investigation of the fine structure of the ER or the specific subcompartments that can originate in cells under stress (i.e. hypoxia, drug administration, the over-expression of transmembrane ER resident proteins) or under pathological conditions, we combine live-cell imaging of cultured transfected cells with ultrastructural analyses based on transmission electron microscopy.  相似文献   

13.
A diverse group of microtubule-binding proteins has been linked through live-cell imaging of green fluorescent protein (GFP) fusion proteins. These proteins share the ability to associate with the plus ends of elongating microtubules and track with these tips as the microtubules grow, in a process known as "tip tracking". Several models have been proposed to explain the significance of this activity, including roles in delivering proteins to the cell periphery and in modulating microtubule dynamics. However, the recent observation that some of the tip trackers colocalize on structures undergoing search-capture suggests that tip tracking could be a fundamental aspect of the search-capture process. Focusing on the shared ability of these proteins to undergo tip tracking, this article is intended to place the search-capture model in the context of other proposed functions and to stimulate discussion in this area.  相似文献   

14.
Fluorescent fusion proteins have revolutionized examination of proteins in living cells. Still, studies using these proteins are met with criticism because proteins are modified and ectopically expressed, in contrast to immunofluorescence studies. However, introducing immunoreagents inside cells can cause protein extraction or relocalization, not reflecting the in vivo situation. Here we discuss pitfalls of immunofluorescence labeling that often receive little attention and argue that immunostaining experiments in dead, permeabilized cells should be complemented with live-cell imaging when scrutinizing protein localization.  相似文献   

15.
Clathrin-mediated endocytosis in the budding yeast Saccharomyces cerevisiae involves the ordered recruitment, activity and disassembly of nearly 60 proteins at distinct sites on the plasma membrane. Two-color live-cell fluorescence microscopy has proven to be invaluable for in vivo analysis of endocytic proteins: identifying new components, determining the order of protein arrival and dissociation, and revealing even very subtle mutant phenotypes. Yeast genetics and functional genomics facilitate identification of complex interaction networks between endocytic proteins and their regulators. Quantitative datasets produced by these various analyses have made theoretical modeling possible. Here, we discuss recent findings on budding yeast endocytosis that have advanced our knowledge of how -60 endocytic proteins are recruited, perform their functions, are regulated by lipid and protein modifications, and are disassembled, all with remarkable regularity.  相似文献   

16.
Drosophila oogenesis is a powerful model for the study of numerous questions in cell and developmental biology. In addition to its longstanding value as a genetically tractable model of organogenesis, recently it has emerged as an excellent system in which to combine genetics and live imaging. Rapidly improving ex vivo culture conditions, new fluorescent biosensors and photo-manipulation tools, and advances in microscopy have allowed direct observation in real time of processes such as stem cell self-renewal, collective cell migration, and polarized mRNA and protein transport. In addition, entirely new phenomena have been discovered, including revolution of the follicle within the basement membrane and oscillating assembly and disassembly of myosin on a polarized actin network, both of which contribute to elongating this tissue. This review focuses on recent advances in live-cell imaging techniques and the biological insights gleaned from live imaging of egg chamber development.  相似文献   

17.
Fluorescent proteins have proven to be excellent tools for live-cell imaging studies. In addition to green fluorescent protein (GFP) and its variants, recent progress was achieved in the development of monomeric red fluorescent proteins (mRFPs) that show improved properties in respect to maturation and intracellular fluorescence. mRFPmars, a red fluorescent protein designed especially for the use in Dictyostelium, has been employed to tag different proteins for live-cell investigations in Dictyostelium. mRFPruby, which differs in sequence from mRFPmars in four amino acids, has a codon usage optimised for the application in mammalian cells. Here, we show that both mRFP variants can also be applied for localisation studies in other organisms. mRFPmars was expressed in Hydra and fused to the Bcl-2 family protein Bax. mRFPruby in combination with histone 2B was expressed in Drosophila S2 cells to monitor mitosis. Using mouse cell lines, mRFPruby fused to beta-actin was assayed with high spatial resolution to study details of actin cytoskeleton dynamics. In addition, we demonstrate that both mRFP variants are also suitable for dual-colour microscopy in the different species.  相似文献   

18.
Clathrin-mediated endocytosis (CME) is the major pathway for internalization of membrane proteins from the cell surface. Half a century of studies have uncovered tremendous insights into how a clathrin-coated vesicle is formed. More recently, the advent of live-cell imaging has provided a dynamic view of this process. As CME is highly conserved from yeast to humans, budding yeast provides an evolutionary template for this process and has been a valuable system for dissecting the underlying molecular mechanisms. In this review we trace the formation of a clathrin-coated vesicle from initiation to uncoating, focusing on key findings from the yeast system.  相似文献   

19.
Diverse cargo molecules (i.e., receptors and ligand/receptor complexes) are taken into the cell by clathrin-mediated endocytosis (CME) utilizing a core machinery consisting of cargo-specific adaptors, clathrin and the GTPase dynamin. Numerous endocytic accessory proteins are also required, but their differential roles and functional hierarchy during CME are not yet understood. Here, we used a combination of quantitative live-cell imaging by total internal reflection fluorescence microscopy (TIR-FM), and decomposition of the lifetime distributions of clathrin-coated pits (CCPs) to measure independent aspects of CCP dynamics, including the turnover of abortive and productive CCP species and their relative contributions. Capitalizing on the sensitivity of this assay, we have examined the effects of specific siRNA-mediated depletion of endocytic accessory proteins on CME progression. Of the 12 endocytic accessory proteins examined, we observed seven qualitatively different phenotypes upon protein depletion. From this data we derive a temporal hierarchy of protein function during early steps of CME. Our results support the idea that a subset of accessory proteins, which mediate coat assembly, membrane curvature, and cargo selection, can provide input into an endocytic restriction point/checkpoint mechanism that monitors CCP maturation.  相似文献   

20.
Predictome: a database of putative functional links between proteins   总被引:11,自引:2,他引:9       下载免费PDF全文
The current deluge of genomic sequences has spawned the creation of tools capable of making sense of the data. Computational and high-throughput experimental methods for generating links between proteins have recently been emerging. These methods effectively act as hypothesis machines, allowing researchers to screen large sets of data to detect interesting patterns that can then be studied in greater detail. Although the potential use of these putative links in predicting gene function has been demonstrated, a central repository for all such links for many genomes would maximize their usefulness. Here we present Predictome, a database of predicted links between the proteins of 44 genomes based on the implementation of three computational methods—chromosomal proximity, phylogenetic profiling and domain fusion—and large-scale experimental screenings of protein–protein interaction data. The combination of data from various predictive methods in one database allows for their comparison with each other, as well as visualization of their correlation with known pathway information. As a repository for such data, Predictome is an ongoing resource for the community, providing functional relationships among proteins as new genomic data emerges. Predictome is available at http://predictome.bu.edu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号