首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystalline structure of β-chitin from squid pen was investigated by X-ray diffraction (XRD). The purified β-chitin was prepared from bigfin reefsquid pen. β-Chitin was treated with saturated calcium chloride dihydrate/alchohol (CaCl2·2H2O/MeOH) solvent system at different conditions for XRD studies. The change of crystallinity of β-chitin from squid pen was studied by using the fiber photographs on imaging plates. The results showed that the diffraction peak (0 1 0) was shifted. It means that the lattice plane (0 1 0) interplanarilly spreaded to 3.4 Å, when the squid pen was washed with water after treatment of Ca solvent. Furthermore, when the squid pen was dried after treatment of Ca solvent and washing with water, interplanar spacing of (0 1 0) inversely shrank to 1.1 Å. These results suggested that Ca solvent especially influences the plane (0 1 0) of β-chitin structure.  相似文献   

2.
Low-molecular-weight (LMW) κ-carrageenan was achieved through mild hydrochloric acid hydrolysis of κ-carrageenan. The acylation of low-molecular-weight κ-carrageenan was performed by use of tetrabutylammonium (TBA) salt of the anionic polysaccharide fragments, maleic anhydride, 4-dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide at 60 °C. Analysis of FT-IR spectrum of O-maleoyl κ-carrageenan showed that a monoester derivative with maleoyl group was formed when LMW κ-carrageenan reacted with maleic anhydride. Investigation of 1H NMR spectroscopy revealed that the maleoylation took place regioselectively at C-2 of the κ-carrageenan 3-linked unit.  相似文献   

3.
It is shown that under certain circumstances, on cooling mixed ι- and κ-carrageenan solutions, the two forms gel separately at different temperatures, with the ι form gelling first. This ‘two-step gelation’ was only observed when both sodium and potassium ions were present, with a sodium/potassium mole ratio of between 1 and 100. For such mixed gels, a κ fraction as low as 2·5% of the total carrageenan has significant effects on their rheology, both at low deformation and fracture. In these systems, the κ form, gelling in the presence of an existing ι gel, produces measurable rheological effects at much lower concentrations than if it were alone. This behaviour can be used as a sensitive test of the ‘rheological purity’ of samples of ι-carrageenan.  相似文献   

4.
X-ray fiber diffraction analysis confirms that calcium iota-carrageenan forms a threefold, right-handed, half-staggered, parallel, double helix of pitch 26.42 A stabilized by interchain hydrogen bonds. According to the detailed structural results, three helices are packed in a trigonal unit cell (a=23.61 and c=13.21 A). Strong interactions between the sulfate groups of neighboring helices, mediated by calcium ions and water molecules, are responsible for stabilizing the three-dimensional structure.  相似文献   

5.
The viscoelastic and microstructural influences of 0.1-0.6% locust bean gum on 0.5 or 1.0% κ-carrageenan gels, in different ionic environments, have been studied using small deformation oscillatory measurements and transmission electron microscopy (TEM). The results from the Theological measurements showed synergistic effects in the storage modulus, G', as locust bean gum, of two different mannose to galactose ratios (3 and 5), was mixed with ion-exchanged Na- and Ca-κ-carrageenan, in 0.25 M NaCl and 0.030 M CaC12, respectively. The increase in G' was dependent on the mannose to galactose ratio, polymer concentrations, and ionic environment.

At the supermolecular level, the microstructure of dilute samples has been visualised using low angle rotary metal shadowing for TEM. In the presence of sodium and calcium ions, the self-association of κ-carrageenan helices is moderate to low. Locust bean gum did not influence the supermolecular structure of κ-carrageenan to any large extent. The microstructure of the gels at the network level was studied using plastic embedding and thin sectioning for TEM. In both sodium and calcium ionic environments, the mixed gels showed a more homogeneous and connective network structure.  相似文献   


6.
Low-molecular-weight (LMW) κ-carrageenan was achieved through mild hydrochloric acid hydrolysis of κ-carrageenan. The acylation of LMW κ-carrageenan was performed by use of tetrabutylammonium (TBA) salt of the anionic polysaccharide fragments, succinic anhydride, 4-dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide at 80 °C. Investigation of FT-IR spectrum of the succinylated LMW κ-carrageenan showed that a monoester derivative with succinyl group was formed when LMW κ-carrageenan reacted with succinic anhydride. The 1H and 13C NMR spectroscopy has been used to characterize the fine structure of O-succinyl derivative of the LMW κ-carrageenan. The 13C and 1H NMR chemical shifts of disaccharide unit of O-succinyl LMW κ-carrageenan have been fully assigned using 2D NMR spectroscopic techniques.  相似文献   

7.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1, EC1.1.1.62) is an important enzyme that catalyses the last step of active estrogen formation. 17β-HSD1 plays a key role in the proliferation of breast cancer cells. The three-dimensional structures of this enzyme and of the enzyme-estradiol complex have been solved (Zhu et al., 1993, J. Mol. Biol. 234:242; Ghosh et al., 1995, Structure 3:503; Azzi et al., 1996, Nature Struct. Biol. 3:665). The determination of the non-reactive ternary complex structure, which could mimic the transition state, constitutes a further critical step toward the rational design of inhibitors for this enzyme (Ghosh et al. 1995, Structure 3:503; Penning, 1996, Endocrine-Related Cancer, 3:41).

To further study the transition state, two non-reactive ternary complexes, 17β-HSD1–EM519-NADP+ and 17β-HSD1–EM553-NADP+ were crystallized using combined methods of soaking and co-crystallization. Although they belong to the same C2 space group, they have different unit cells, with a=155.59 Å, b=42.82 Å, c=121.15 Å, β=128.5° for 17β-HSD1–EM519-NADP+, and a=124.01 Å, b=45.16 Å, c=61.40 Å, β=99.2° for 17β-HSD1–EM553-NADP+, respectively. Our preliminary results revealed that the inhibitors interact differently with the enzyme than do the natural substrates.  相似文献   


8.
Self-diffusion coefficient of an aroma molecule (4-ethyl guaicol) was measured using the pulsed field gradient spin echo NMR (PGSE-NMR) method in order to investigate the influence of a macromolecular matrix on its diffusion and release processes. Iota (ι)-carrageenan was used for its ability to form thermoreversible gels in aqueous salt solutions. Variations of the ι-carrageenan and the salt concentrations permitted various gels with different thermal and rheological properties to be obtained. These latter were modified by an isotope effect obtained by preparing gels in D2O. The NMR self-diffusion measurements realised for water and the aroma molecules indicated neither chemical interactions with ι-carrageenan, nor obstruction effects from the polysaccharide chains. In ι-carrageenan gels, the diffusional phenomenon was highly dependent on the heterogeneous gel structure and controlled by hydrodynamic interactions due to frictional drag between each molecule of the system and water microviscosity changes.  相似文献   

9.
The metal ion complexing properties of the ligand HQC (8-hydroxyquinoline-2-carboxylic acid) are reported. The structures of [Zn(HQCH)2] · 3H2O (1) and [Cd(HQCH)2] · 3H2O (2) were determined (HQCH = HQC with phenol protonated). Both 1 and 2 are triclinic, space group , with Z = 2. For 1 a = 7.152(3), b = 9.227(4), c = 15.629(7) Å,  = 103.978(7)°, β = 94.896(7)°, γ = 108.033(8)°, R = 0.0499. For 2 a = 7.0897(5), b = 9.1674(7), c = 16.0672(11) Å,  = 105.0240(10)°, β = 93.9910(10)°, γ = 107.1270(10)°, R = 0.0330. In 1 the Zn has a distorted octahedral coordination geometry, with Zn–N of 2.00 and 2.15 Å, and Zn–O to the protonated phenolic oxygens of 2.431 and 2.220 Å. The structure of 2 is similar, with Cd–N bonds of 2.220 and 2.228 Å, with Cd–O bonds to the protonated phenolate oxygens of 2.334 and 2.463 Å. The structures of 1 and 2, and isomorphous Ni(II) and Co(II) HQC complexes reported in the literature, show very interesting short (<2.5 Å) O–O distances in H-bonds involving the protons on the coordinated phenolates and lattice water molecules. These are discussed in relation to the possible role of short low-energy H-bonds in alcohol dehydrogenase in mediating the transfer of the hydroxyl proton of the alcohol to an adjacent serine oxygen.

The formation constants for HQC are determined by UV–Visible spectroscopy at 25 °C in 0.1 M NaClO4 with Mg(II), Ca(II), Sr(II), Ba(II), La(III), Gd(III), Zn(II), Cd(II), Ni(II), Cu(II), and Pb(II). These show greatest stabilization with metal ions with an ionic radius above 1.0 Å. This is as would be expected from the fact that HQC forms two five-membered chelate rings on complex-formation, which favors larger metal ions. The ligand design concept of using rigid aromatic backbones in ligands to achieve high levels of preorganization, and hence the high log K values (for a tridentate ligand) and strong metal ion selectivities observed for HQC, is discussed.  相似文献   


10.
β-Carrageenan, essentially devoid of ester sulfate, was isolated from the hot aqueous extracts of alkali-modified Eucheuma gelatinae, Eucheuma speciosa, and Endocladia muricatum by precipitating the more anionic moieties with a quaternary ammonium salt, isolating the fractions that did not precipitate, then treating these with an anion-exchange cellulose. The β-carrageenan was characterized by chemical analysis, optical rotation, and NMR. Gelling was found to be ion-independent, with Tg = 31–33°C and Tm = 63–70°C. Specific optical rotations of the isolated β-carrageenan samples were more positive than the κ-, λ-, and ι-carrageenans with which they were compared, while agarose, its stereoisomer, exhibited a negative specific rotation. Electrophoresis gels made from β-carrageenan were used to separate DNA fragments which exhibited faster migration than on an agarose gel of comparable concentration, indicating that β-carrageenan has a less restrictive pore structure.  相似文献   

11.
The reaction of [Re(NMe)Cl3(PPh3)2] with the pentadentate [N3S2] ligand pyN2H2S2---H2 [2,6-bis(2-mercaptophenylamino)dimethylpyridine] (1) in the presence of triethylamine did not yield the anticipated six-coordinate complex [Re(NMe)(η5-pyN2HS2)] (2), but rather resulted in cleavage of the Re(V)=NMe bond. A novel six-coordinate Re(IV) [N3S]/[NS] complex [Re(η4-SC6H4---2-NCH2---C5H3N---C=NC6H4---2-S)(η2-NHC6H4---2-S)] (4) was thus obtained with the simultaneous coordination of 2-aminothiophenol, a dianionic bidentate [NS] donor resulting from the decomposition of the parent ligand and ligand 3, a dianionic tetradentate [N3S] donor formed by partial self-condensation and subsequent oxidation of the parent ligand 1. Crystal data for 4: C25H18N4S3Re·CH2Cl2, monoclinic, space group P21/n, a=9.255(2) Å, b=11.181(2) Å, c=25.316(4) Å, β=97.434(3)°, V=2587.8(7) Å3 and Z=4.  相似文献   

12.
κ-Carrageenan gels prepared with various carrageenan concentrations in pure water were completely dried and then swelled in pure water. Photon transmission measurements were performed using a UV-Vis (UVV) spectrometer during the swelling of κ-carrageenan gels. Transmitted photon intensity, Itr, increased exponentially as swelling time is increased for all gel samples. The behaviour of Itr was interpreted by Monte-Carlo Simulation. The increase in Itr was quantified by employing Li-Tanaka equation, from which time constants τ1 and collective diffusion coefficients, Do were determined for the gels in various carrageenan concentrations. Gravimetric and volumetric measurements were also carried out during swelling of gels. It is observed that gel with high carrageenan content possess more double helices and more lattice dislocations and swell slower than gels with low carrageenan content which may contain less double helices and less lattice imperfections. Increase in Itr was interpreted by the homogeneous distribution of double helices in the carrageenan gel system.  相似文献   

13.
The X-ray crystal structure of the complex between the anthracycline idarubicin and d(CGATCG) has been solved by molecular replacement and refined to a resolution of 2.0 A. The final R-factor is 0.19 for 3768 reflections with Fo > or = 2 sigma (Fo). The complex crystallizes in the trigonal space group P31 with unit cell parameters a = b = 52.996(4), c = 33.065(2) A, alpha = beta = 90 degree, gamma = 120 degree. The asymmetric unit consists of two duplexes, each one being complexed with two idarubicin drugs intercalated at the CpG steps, one spermine and 160 water molecules. The molecular packing underlines major groove-major groove interactions between neighbouring helices, and an unusually low value of the occupied fraction of the unit cell due to a large solvent channel of approximately 30 A diameter. This is the first trigonal crystal form of a DNA-anthracycline complex. The structure is compared with the previously reported structure of the same complex crystallizing in a tetragonal form. The geometry of both the double helices and the intercalation site are conserved as are the intramolecular interactions despite the different crystal forms.  相似文献   

14.
Treatment of the A-ring aromatic steroids estrone 3-methyl ether and β-estradiol 3, 17-dimethyl ether with Mn(CO)5+BF4 in CH2Cl2 yields the corresponding [(steroid)Mn(CO)3]BF4 salts 1 and 2 as mixtures of and β isomers. The X-ray structure of [(estrone 3-methyl ether)Mn(CO)3]BF4 · CH2Cl2 (1) having the Mn(CO)3 moiety on the side of the steroid is reported: space group P21 with a=10.3958(9), b=10.9020(6), c=12.6848(9) Å, β=111.857(6)°, Z=2, V=1334.3(2) Å3, calc=.481 cm−3, R=0.0508, and wR=0.0635. The molecule has the traditional ‘piano stool’ structure with a planar arene ring and linear Mn---C---O linkages. The nucleophiles NaBH4 and LiCH2C(O)CMe3 add to [(β-estradiol 3,17-dimethyl ether)Mn(CO)3]BF4 (2) in high yield to give the corresponding - and β-cyclohexadienyl manganese tricarbonyl complexes (3). The nucleophiles add meta to the arene -OMe substituent and exo to the metal. The and β isomers of 3 were separated by fractional crystallization and the X-ray structure of the β isomer with an exo-CH2C(O)CMe3 substituent is reported (complex 4): space group P212121 with a=7.5154(8), b=15.160(2), c=25.230(3) Å, Z=4, V=2874.4(5) Å3, calc=1.244 g cm−3, R=0.0529 and wR2=0.1176. The molecule 4 has a planar set of dienyl carbon atoms with the saturated C(1) carbon being 0.592 Å out of the plane away from the metal. The results suggest that the manganese-mediated functionalization of aromatic steroids is a viable synthetic procedure with a range of nucleophiles of varying strengths.  相似文献   

15.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

16.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

17.
The cyclocondensation of 2,5-diformylthiophene and the amines N,N-bis-(2-aminoethyl)-2-phenylethylamine, N,N-bis-(2aminoethyl)-t-butyl-amine and N,N-bis-(2-aminoethyl)-t-butyl-amine in the presence of silver(I) salts yields homodinuclear bibracchial tetraimine Schiff base macrocyclic complexes. The structures of two such complexes are also reported. The complex Ag2L4(NO3)(PF6) (2) crystallises in the triclinic space group , No. 2) and has unit-cell dimensions a = 12.834(6), B = 13.183(6), C = 14.588(7) Å, = 64.86(4), β = 79.77(4), γ = 69.44(3)° with Z = 2; there is a monodentate and singly bridging nitrate anion present and the Ag---Ag separation is 4.161 Å. The complex Ag2L4(CH3CN)2(BF4)2·CH3CN (9) crystallises in the triclinic space group , No. 2) and has unit-cell dimensions a = 9.297(4), B = 12.985(3), C = 21.770(5) Å, = 91.570(10), β = 92.33(3), γ = 97.92(3) ° with Z = 2; there is a strongly bonded acetonitrile molecule coordinated to each silver atom and the Ag---Ag separation is 4.920 Å.  相似文献   

18.
The methanothermal reactions of M(CO)6 (M = Mo, W) with Na2S2 gave a series of homonuclear clusters [{M(CO)4}n(MS4)]2− (M=Mo, W; N=1, 2), i.e. (Ph4P)2[(CO)4Mo(MoS4)] (I), (Ph4P)2[(CO)4W(WS4)] (II), (Ph4P)2[(CO)4Mo(MoS4)Mo(CO)4] (III) and (Ph4P)2[(CO)4W(WS4)W(CO)4] (IV). The two dimers, I and II, as well as the two trimers, III and IV, are isostructural to each other, respectively. All compounds crystallize in the triclinic space group with Z=2. The cell dimensions are: a=12.393(8), b=19.303(9), c=11.909(6) Å, =102.39(5), β=111.54(5), γ=73.61(5)°, V=2522(3) Å3 at T=23 °C for I; a=12.390(3), b=19.314(4), c=11.866(2) Å, =102.66(2), β=111.49(1), γ=73.40(2)°, V=2511(1) Å3 at T=23 °C for II; a=11.416(3), b=22.524(4), c=10.815(4) Å, =91.03(2), β=100.57(3), γ=88.96(2)°, V=2733(1) Å3 at T=−100 °C for III, a=11.498(1), b=22.600(4), c=10.864(3) Å, =90.92(2), β=100.85(1), γ=88.58(1)°, V=2771(2) Å3 at T=23 °C for IV. The dimers are each formed by the coordination of the tetrathiometalate as a bidentate chelating ligand to an M(CO)4 fragment while addition of another M(CO)4 fragment to the dimers results in the trimers. All compounds contain both tetrahedral and octahedral metal centers with the formal 6+ and 0 oxidation states, respectively.  相似文献   

19.
The complexes [Ln(pytpy)(NO3)2(μ-OCH3)]2 (Ln = Eu(III), Tb(III), Dy(III), pytpy=4′-(n-pyridyl)-2,2′:6′,2″-terpyridine, n = 2, 3) were synthesized and characterized by IR, elemental analyses, UV–Vis and luminescent spectroscopy. Three complexes crystallized in monoclinic system, P21/n space group. Lanthanide ions are nine-coordinated by three nitrogen atoms from tridentate pytpy ligands, four oxygen atoms from two bidentate nitrate groups and two oxygen atoms from two methoxo groups, forming distorted tricapped trigonal prismatic geometries. The dimethoxo-bridges connect two metal ions in asymmetric fashion into dimeric structures with short LnLn distances of 3.767(1), 3.740(1) and 3.720(1) Å for Eu(III), Tb(III) and Dy(III) complexes, respectively. Photoluminescence measurement indicates that 1 and 3 emit the characteristic luminescence of Tb(III) and Eu(III) ions in the solid state, respectively. The luminescent spectrum of Eu(III) complex in solvents was also investigated.  相似文献   

20.
The reaction between cimetidine in a methanolic solution of KOH and a dichloromethane solution of PPh3AuCl affords a new compound with formula [L-Au-PPh3] (I) (L = 2-(N-methyl-N′-cyano-N″-ethylguanidino)thiolate), the thiolato ligand resulting from cleavage of one of the thioether bonds of cimetidine. (I) has been characterized by elemental analysis, infrared, and 1H and 13C NMR spectroscopy. Single crystal x-ray structure determination shows that the gold atom is linearly coordinated by a phosphine ligand (Au-P 2.258(1) Å) and by an S atom (Au-S 2.282(1) Å) of the thiolato ligand. Crystal data: triclinic, space group P with a = 8.848(1), b = 11.343(3), c = 12.107(3)Å, = 87.63(1), β = 85.24(1), γ = 79.89(1)°, R = 0.024 for 3673 reflections with I > 3 δ (I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号