首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The profound morphological changes which follow the treatment of chicken erythrocytes with the ionophore A23187 and Ca2+ are associated with a concomitant breakdown of certain membrane-associated proteins including α-spectrin, goblin and microtubule-associated proteins (MAPS) which undergo a limited proteolysis to give large, well-defined fragments. The Ca2+-sensitive protease responsible for these changes appears to be present in the soluble fraction of the cells. Treatment with TLCK or iodoacetamide inhibits both the major morphological changes and the proteolytic events but these agents do not prevent the dissociation of microtubules or the activation of endogenous sphingomyelinase which occur in cells with raised levels of intracellular Ca2+. It is suggested that the sphingomyelinase is activated as a consequence of a Ca2+-induced loss of phospholipid asymmetry in the plasma membrane.  相似文献   

2.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

3.
Lipid rafts/caveolae as microdomains of calcium signaling   总被引:1,自引:1,他引:0  
Ca2+ is a major signaling molecule in both excitable and non-excitable cells, where it serves critical functions ranging from cell growth to differentiation to cell death. The physiological functions of these cells are tightly regulated in response to changes in cytosolic Ca2+ that is achieved by the activation of several plasma membrane (PM) Ca2+ channels as well as release of Ca2+ from the internal stores. One such channel is referred to as store-operated Ca2+ channel that is activated by the release of endoplasmic reticulum (ER) Ca2+ which initiates store-operated Ca2+ entry (SOCE). Recent advances in the field suggest that some members of TRPCs and Orai channels function as SOCE channels. However, the molecular mechanisms that regulate channel activity and the exact nature of where these channels are assembled and regulated remain elusive. Research from several laboratories has demonstrated that key proteins involved in Ca2+ signaling are localized in discrete PM lipid rafts/caveolar microdomains. Lipid rafts are cholesterol and sphingolipid-enriched microdomains that function as unique signal transduction platforms. In addition lipid rafts are dynamic in nature which tends to scaffold certain signaling molecules while excluding others. By such spatial segregation, lipid rafts not only provide a favorable environment for intra-molecular cross-talk but also aid to expedite the signal relay. Importantly, Ca2+ signaling is shown to initiate from these lipid raft microdomains. Clustering of Ca2+ channels and their regulators in such microdomains can provide an exquisite spatiotemporal regulation of Ca2+-mediated cellular function. Thus in this review we discuss PM lipid rafts and caveolae as Ca2+-signaling microdomains and highlight their importance in organizing and regulating SOCE channels.  相似文献   

4.
Calcium signaling system in plants   总被引:4,自引:0,他引:4  
  相似文献   

5.
To investigate Ca2+ uptake by Ca2+-depleted bovine chromaffin cells we depleted these cells of Ca2+ by incubating them in Ca2+-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+ 1)45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca2+-depleted cells and cells which had been loaded with BAPTA,45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.Abbreviations used BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid - BAPTA/AM acetoxymethyl ester of BAPTA - [Ca2+]i cytosolic Ca2+ concentration - IP3 inositol 1,4,5-trisphosphate - tBHQ 2,5-di-(t-butyl)-1,4-benzohydroquinone This work was included in a thesis submitted by A.-L. Sui to the Department of Biochemistry, National Yang-Ming Medical College, in partial fulfillment of the requirements for the degree of Doctor of Philosophy  相似文献   

6.
This work investigated the role of Ca2+ mobilization and heterotrimeric G protein activation in mediating angiotensin II-dependent tyrosine phosphorylation signaling patterns. We demonstrate that the predominant, angiotensin II-dependent, tyrosine phosphorylation signaling patterns seen in vascular smooth muscle cells are blocked by the intracellular Ca2+ chelator BAPTA-AM, but not by the Ca2+ channel blocker verapamil. Activation of heterotrimeric G proteins with NaF resulted in a divergent signaling effect; NaF treatment was sufficient to increase tyrosine phosphorylation levels of some proteins independent of angiotensin II treatment. In the same cells, NaF alone had no effect on other cellular proteins, but greatly potentiated the ability of angiotensin II to increase the tyrosine phosphorylation levels of these proteins. Two proteins identified in these studies were paxillin and Jak2. We found that NaF treatment alone, independent of angiotensin II stimulation, was sufficient to increase the tyrosine phosphorylation levels of paxillin. Furthermore, the ability of either NaF and/or angiotensin II to increase tyrosine phosphorylation levels of paxillin is critically dependent on intracellular Ca2+. In contrast, angiotensin II-mediated Jak2 tyrosine phosphorylation was independent of intracellular Ca2+ mobilization and extracellular Ca2+ entry. Thus, our data suggest that angiotensin II-dependent tyrosine phosphorylation signaling cascades are mediated through a diverse set of signaling pathways that are partially dependent on Ca2+ mobilization and heterotrimeric G protein activation.  相似文献   

7.
The characteristics of endogenous Ca2+/calmodulin (CaM)- and Ca2+/phosphatidylserine (PS)-stimulated phosphorylated proteins in the striatum of rat were partially determined and compared in this study. The Ca2+/CaM-dependent phosphoproteins were associated with serine and threonine residues. The sensitivity of these proteins for phosphorylation by Ca2+/CaM was not affected by pretreatment of tissue with Ca2+ chelating agent, EGTA or with non-ionic detergent, Triton X-114. Triton X-114 phase separation experiments revealed that these Ca2+/CaM-dependent phosphoproteins were partitioned in the detergent rich phase suggesting that they are integral proteins of the striatal membrane. On the other hand, the Ca2+/PS-dependent phosphorylated proteins were primarily associated with the serine residue. Phosphorylation of these proteins by Ca2+/PS were abolished after the treatment with EGTA or Triton X-114. These results suggest that Ca2+/PS-dependent striatal phosphoproteins are biochemically unstable in maintaining their state of phosphorylation.  相似文献   

8.
Summary 1. The Ca2+-mediated regulation of interaction between FGF-1 and S100A13 in NG108-15 cells was studied. When the stress by depriving B27 supplement from the culture was given, cellular levels of both proteins were decreased, while their releases were significantly increased within 3 h. These stress-induced changes were all abolished by amlexanox, an anti-allergic drug.2. These releases were significantly inhibited by the addition of EGTA or BAPTA-AM, cellular or extracellular Ca2+-chelating agent, respectively. The addition of ω-conotoxin GVIA, a N-type Ca2+-channel blocker caused a complete inhibition of the release, while increased the cytosolic levels of both proteins. However, ω-conotoxin MVIIC, the non-N-type Ca2+-channel blocker was ineffective.3. In NG108-15 cells, which had been transfected with Venus-FGF-1 and CFP-S100A13, the supplement-deprivation stress caused several spike-type fluorescence resonance energy transfer (FRET) signals, suggesting that both proteins showing interaction would be immediately released. These spikes were completely abolished by the addition of ω-conotoxin GVIA. However, the addition of amlexanox caused bell-shaped FRET signals without spikes.4. Thus, it is suggested that the interaction between FGF-1 and S100A13 responsible for stress-induced non-vesicular release is dependent of Ca2+-influx through N-type Ca2+-channels.  相似文献   

9.
The aim of this study was to explore the possible participation of cardiac renin-angiotensin system (RAS) in the ischemia-reperfusion induced changes in heart function as well as Ca2+-handling activities and gene expression of cardiac sarcoplasmic reticulum (SR) proteins. The isolated rat hearts, treated for 10 min without and with 30 M captopril or 100 M losartan, were subjected to 30 min ischemia followed by reperfusion for 60 min and processed for the measurement of SR function and gene expression. Attenuated recovery of the left ventricular developed pressure (LVDP) upon reperfusion of the ischemic heart was accompanied by a marked reduction in SR Ca2+-pump ATPase, Ca2+-uptake and Ca2+-release activities. Northern blot analysis revealed that mRNA levels for SR Ca2+-handling proteins such as Ca2+-pump ATPase (SERCA2a), ryanodine receptor, calsequestrin and phospholamban were decreased in the ischemia-reperfused heart as compared with the non-ischemic control. Treatment with captopril improved the recovery of LVDP as well as SR Ca2+-pump ATPase and Ca2+-uptake activities in the postischemic hearts but had no effect on changes in Ca2+-release activity due to ischemic-reperfusion. Losartan neither affected the changes in contractile function nor modified alterations in SR Ca2+-handling activities. The ischemia-reperfusion induced decrease in mRNA levels for SR Ca2+-handling proteins were not affected by treatment with captopril or losartan. The results suggest that the improvement of cardiac function in the ischemic-reperfused heart by captopril is associated with the preservation of SR Ca2+-pump activities; however, it is unlikely that this action of captopril is mediated through the modification of cardiac RAS. Furthermore, cardiac RAS does not appear to contribute towards the ischemia-reperfusion induced changes in gene expression for SR Ca2+-handling proteins.  相似文献   

10.
We have addressed the possibility that Ca2+, Mg2+ and K+ ions play a central role in governing the morphological and biochemical changes attributed to apoptotic cell death. By removing Ca2+, Mg2+ or K+ ions from the cell culture medium we were able to assess the contribution of each ion to hybridoma cell growth and viability. The differences were explained in terms of a possible reduction in their respective intracellular levels. From several lines of evidence, the deprivation of K+ ions was the most detrimental to cellular growth and viability and induced significant levels of early apoptotic cells. Another effect of this deprivation was to weaken the plasma membranes without causing membrane breakdown; exposure to high agitation rates confirmed fragility of the cell membranes. Removal of Mg2+ caused a reduction in the levels of early apoptotic cells and predisposed cells to high levels of primary necrotic death. The lower levels of apoptotic cells failed to demonstrate the classic nuclear morphology associated with apoptosis, while retaining other apoptotic features. These results highlighted the importance of utilizing several assays for the determination of apoptosis. The absence of Ca2+ appeared to be the mildest insult, but its deprivation did accelerate a significant decline in culture by increasing apoptotic death. Hybridoma cells overexpressing the apoptotic suppresser gene bcl-2 were protected from the predominantly necrosis inducing effects of Mg2+ ion deprivation and apoptosis inducing effects of Ca2+ ion deprivation. However, apoptosis was not as effectively suppressed in bcl-2 cells responding to incubation in K+ free medium. The inclusion of bcl-2 activity in the mechanisms of Ca2+ Mg2+ or K+ deprivation induced cell death emphasizes a close relationship between ionic dissipation and the apoptotic process.  相似文献   

11.
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium (TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation. This work was supported by National Institutes of Health Grant HL 18708.  相似文献   

12.
Ionised calcium (Ca2+) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca2+ can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca2+ channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca2+ concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca2+ signal transduction, with these longer-term alterations in cellular Ca2+ homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca2+ signalling. This review examines the ways in which oxysterols could influence Ca2+ signal transduction and the potential roles of this in health and disease.  相似文献   

13.
Summary We have previously reported hyperpolarizing membrane potential changes in a monkey kidney cell line (JTC-12) which has characteristics resembling proximal tubular cells. These hyperpolarizations could be observed spontaneously or evoked by mechanically touching adjacent cells. In this report, we have shown further evidence that these hyperpolarizations are elicited by an increase in membrane conductance to K+ which is caused by an increase in cytosolic Ca2+ concentration. In addition, we have found another type of hyperpolarization which is evoked by applying flow of extracellular fluid to the cell. Intracellular injection of Ca2+ and Sr2+ evoked hyperpolarizations, while intracellular injection of Mn2+ and Ba2+ did not. Intracellular injection of EGTA suppressed both spontaneous and mechanically evoked hyperpolarizations. In Ca2+-free medium, both spontaneous and flow-evoked hyperpolarizations were not observed, while mechanical stimuli consistently evoked hyperpolarization. In Na+-free medium, the incidence of cells showing the spontaneous or flow-evoked hyperpolarization increased, and the amplitude and the duration of the mechanically evoked hyperpolarization became greater. Quinidine inhibited all types of hyperpolarization. These data suggest that hyperpolarizations in JTC-12 cells are due to an increase in Ca2+-activated K+ conductance.  相似文献   

14.
The Ca2+-binding helix-loop-helix structural motif called “EF-hand” is a common building block of a large family of proteins that function as intracellular Ca2+-receptors. These proteins respond specifically to micromolar concentrations of Ca2+ in the presence of ~1000-fold excess of the chemically similar divalent cation Mg2+. The intracellular free Mg2+ concentration is tightly controlled in a narrow range of 0.5-1.0 mM, which at the resting Ca2+ levels is sufficient to fully or partially saturate the Ca2+-binding sites of many EF-hand proteins. Thus, to convey Ca2+ signals, EF-hand proteins must respond differently to Ca2+ than to Mg2+. In this review the structural aspects of Mg2+ binding to EF-hand proteins are considered and interpreted in light of the recently proposed two-step Ca2+-binding mechanism (Grabarek, Z., J. Mol. Biol., 2005, 346, 1351). It is proposed that, due to stereochemical constraints imposed by the two-EF-hand domain structure, the smaller Mg2+ ion cannot engage the ligands of an EF-hand in the same way as Ca2+ and defaults to stabilizing the apo-like conformation of the EF-hand. It is proposed that Mg2+ plays an active role in the Ca2+-dependent regulation of cellular processes by stabilizing the “off state” of some EF-hand proteins, thereby facilitating switching off their respective target enzymes at the resting Ca2+ levels. Therefore, some pathological conditions attributed to Mg2+ deficiency might be related to excessive activation of underlying Ca2+-regulated cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

15.
Applications of intrinsic fluorescence measurements in the study of Ca2+-transport ATPases are reviewed. Since the initial reports showing that the fluorescence emission was sensitive to Ca2+ binding, a substantial amount of work has focused on the use of both steady-state and time-resolved fluorescence spectroscopy to investigate structure-function relationships in sarcoplasmic reticulum and plasma membrane Ca2+-ATPases. These studies have revealed ligand-induced conformational changes, as well as provided information on protein-protein, protein-solvent and/or protein-lipid interactions in different functional states of these proteins. The main results of these studies, as well as possible future prospects are discussed.  相似文献   

16.
Membrane potential changes accompanying Ca2+ influx stimulated by release of Ca2+ from intracellular stores (store-regulated Ca2+ uptake) were monitored in BAPTA-loaded rat thymic lymphocytes using the fluorescent indicator bis(1,3-diethylthiobarbituric acid)trimethine oxonol. Depletion of [Ca2+] i stores by the application of thapsigargin, ionomycin or cyclopiazonic acid induced a depolarization which was (i) dependent upon BAPTA-loading, (ii) dependent upon extracellular Ca2+, (iii) independent of extracellular Na+ and (iv) abolished by 5 mm extracellular Ni2+. This depolarization was followed by a charybdotoxin-sensitive repolarization and subsequent hyperpolarization to values approximating the K+ equilibrium potential, consistent with secondary activation of a K+ conductance. These membrane potential changes temporally correlated with Ca2+ influx from the extracellular medium as measured fluorimetrically with indo-1. The divalent cation permeability sequence was investigated by monitoring the magnitude of the depolarization observed following the addition of 4 mm Ca2+, Mn2+, Ba2+ or Sr2+ to cells pretreated with doses of thapsigargin or ionomycin known to activate the store-regulated calcium uptake pathway. On the basis of these experiments, we conclude that the store-regulated Ca2+ uptake pathway has the following permeability sequence: Ca2+ > Mn2+ Ba2+, Sr2+ with Mn2+ displaying significant permeability relative to Ca2+. This pathway is distinguishable from other divalent cation uptake pathways reported in other cells types on the basis of its activation by thapsigargin and its high Mn2+ permeability.This work is supported by grants from the American Heart Association, Louisiana Affiliate (LA-92-6-28), Louisiana Education Quality Support Fund (LEQSF(1993-96)-RD-A-31) and Tulane University Graduate Program in Molecular and Cellular Biology.  相似文献   

17.
A continuous line derived from a human skin squamous cell carcinoma has been grown in media of high, normal and low Ca2+ concentrations. The growth rate was unaffected by the Ca2+ levels even though morphological changes were observed. Desmosomes were absent at low Ca2+ and areas of cell piling were observed at high Ca2+. Cell protein staining patterns on polyacrylamide gels were identical for cells grown at the three Ca2+ levels. The variations were minor for the glycoproteins reacted with 125I-conA. Lactoper-oxidase iodination revealed changes in cell surface proteins, most markedly in the emergence of new proteins at high Ca2+.  相似文献   

18.
Ionophore-induced changes in the cell-associated fluorescence of samples of approx. 50 000 individual murine L1210 leukemia cells which had been incubated with the voltage-sensitive dye 3,3′-dihexyloctacarbocyanine iodide (DiOC6(3)) were monitored by flow cytometry. The K+ ionophore valinomycin (1 μM) produced homogeneous changes in the fluorescence of the entire population, the magnitude of which was dependent upon the concentration of extracellular K+. These changes allowed the estimation of the potassium equilibrium potential of the cells, by the null-point method, to be – 11.9 mV. The Ca2+ ionophore A23187 (500 nM) produced heterogeneous changes in fluorescence, with populations of both hyperpolarised and depolarised cells. In addition, the depolarised population underwent an apparent size change, with a reduction in cell volume. This heterogeneity of response resulted in a minimal change in the median fluorescence value for the whole population, which suggests that it would not have been detectable by methods dependent upon net population-averaged changes in fluorescence. Removal of extracellular Na+ or preincubation of cells with amiloride (500 μM) effectively eliminated the depolarised population. Removal of extracellular K+ increased the hyperpolarised population. These findings provide evidence for the presence of Ca2+-induced Na+ exchange and Ca2+-induced K+ efflux mechanisms in these cells which may be expressed simultaneously in the cell population.  相似文献   

19.
Plasma membrane injury is a frequent event, and wounds have to be rapidly repaired to ensure cellular survival. Influx of Ca2+ is a key signaling event that triggers the repair of mechanical wounds on the plasma membrane within ~30 sec. Recent studies revealed that mammalian cells also reseal their plasma membrane after permeabilization with pore forming toxins in a Ca2+-dependent process that involves exocytosis of the lysosomal enzyme acid sphingomyelinase followed by pore endocytosis. Here, we describe the methodology used to demonstrate that the resealing of cells permeabilized by the toxin streptolysin O is also rapid and dependent on Ca2+ influx. The assay design allows synchronization of the injury event and a precise kinetic measurement of the ability of cells to restore plasma membrane integrity by imaging and quantifying the extent by which the liphophilic dye FM1-43 reaches intracellular membranes. This live assay also allows a sensitive assessment of the ability of exogenously added soluble factors such as sphingomyelinase to inhibit FM1-43 influx, reflecting the ability of cells to repair their plasma membrane. This assay allowed us to show for the first time that sphingomyelinase acts downstream of Ca2+-dependent exocytosis, since extracellular addition of the enzyme promotes resealing of cells permeabilized in the absence of Ca2+.  相似文献   

20.
Calcium pools,calcium entry,and cell growth   总被引:2,自引:0,他引:2  
The Ca2+ pump and Ca2+ release functions of intracellular Ca2+ pools have been well characterized. However, the nature and identity of Ca2+ pools as well as the physiological implications of Ca2+levels within them, have remained elusive. Ca2+ pools appear to be contained within the endoplasmic reticulum (ER); however, ER is a heterogeneous and widely distributed organelle, with numerous other functions than Ca2+ regulation. Studies described here center on trying to determine more about subcellular distribution of Ca2+ pools, the levels of Ca2+ within Ca2+ pools, and how these intraluminal Ca2+ levels may be physiologically related to ER function. Experiments utilizingin situ high resolution subcellular morphological analysis of ER loaded with ratiometric fluroescent Ca2+ dyes, indicate a wide distribution of inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pools within cells, and large changes in the levels of Ca2+ within pools following InsP3-mediated Ca2+ release. Such changes in Ca2+ may be of great significance to the translation, translocation, and folding of proteins in ER, in particular with respect to the function of the now numerously described luminal Ca2+-sensitive chaperonin proteins. Studies have also focussed on the physiological role of pool Ca2+ changes with respect to cell growth. Emptying of pools using Ca2+ pump blockers can result in cells entering a stable quiescent G0-like growth state. After treatment with the irreversible pump blocker, thapsigargin, cells remain in this state until they are stimulated with essential fatty acids whereupon new pump protein is synthesized, functional Ca2+ pools return, and cells reenter the cell cycle. During the Ca2+ pool-depleted growth-arrested state, cells express a Ca2+ influx channel that is distinct from the store-operated Ca2+ influx channels activated after short-term depletion of Ca2+ pools. Overall, these studies indicate that significant changes in intraluminal ER Ca2+ do occur and that such changes appear linked to alteration of essential ER functions as well as to the cell cycle-state and the growth of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号