首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, the overproduction of Mycobacterium tuberculosis diaminopimelic acid (DAP) epimerase MtDapF in Escherichia coli using a novel codon alteration cloning strategy and the characterization of the purified enzyme was reported. In the present study, the effect of sulphydryl alkylating agents on the in vitro activity of M. tuberculosis DapF was tested. The complete inhibition of the enzyme by 2-nitro-5-thiocyanatobenzoate, 5,5'-dithio-bis(2-nitrobenzoic acid) and 1,2-benzisothiazolidine-3-one at nanomolar concentrations suggested that these sulphydryl alkylating agents modify functionally significant cysteine residues at or near the active site of the epimerase. Consequently, the authors extended the characterization of MtDapF by studying the role of the two strictly conserved cysteine residues. The putative catalytic residues Cys87 and Cys226 of MtDapF were replaced individually with both serine and alanine. Residual epimerase activity was detected for both the serine replacement mutants C87S and C226S in vitro. Kinetic analyses revealed that, despite a decrease in the K(M) value of the C87S mutant for DAP that presumably indicates an increase in nonproductive substrate binding, the catalytic efficiency of both serine substitution mutants was severely compromised. When either C87 or C226 were substituted with alanine, epimerase activity was not detected emphasizing the importance of both of these cysteine residues in catalysis.  相似文献   

2.
Cys126 is a completely conserved residue in triosephosphate isomerase that is proximal to the active site but has been ascribed no specific role in catalysis. A previous study of the C126S and C126A mutants of yeast TIM reported substantial catalytic activity for the mutant enzymes, leading to the suggestion that this residue is implicated in folding and stability [Gonzalez-Mondragon E et al. (2004) Biochemistry 43, 3255-3263]. We re-examined the role of Cys126 with the Plasmodium falciparum enzyme as a model. Five mutants, C126S, C126A, C126V, C126M, and C126T, were characterized. Crystal structures of the 3-phosphoglycolate-bound C126S mutant and the unliganded forms of the C126S and C126A mutants were determined at a resolution of 1.7-2.1 ?. Kinetic studies revealed an approximately five-fold drop in k(cat) for the C126S and C126A mutants, whereas an approximately 10-fold drop was observed for the other three mutants. At ambient temperature, the wild-type enzyme and all five mutants showed no concentration dependence of activity. At higher temperatures (> 40 °C), the mutants showed a significant concentration dependence, with a dramatic loss in activity below 15 μM. The mutants also had diminished thermal stability at low concentration, as monitored by far-UV CD. These results suggest that Cys126 contributes to the stability of the dimer interface through a network of interactions involving His95, Glu97, and Arg98, which form direct contacts across the dimer interface.  相似文献   

3.
Escherichia coli fatty acid cyclopropane synthase (CFAS) was overproduced and purified as a His6-tagged protein. This recombinant enzyme is as active as the native enzyme with a Km of 90 microm for S-AdoMet and a specific activity of 5 x 10(-2) micromol.min(-1).mg(-1). The enzyme is devoid of organic or metal cofactors and is unable to catalyze the wash-out of the methyl protons of S-AdoMet to the solvent, data that do not support the ylide mechanism. Inactivation of the enzyme by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a pseudo first-order process with a rate constant of 1.2 m(-1).s(-1), is not protected by substrates. Graphical analysis of the inactivation by DTNB revealed that only one cysteine is responsible for the inactivation of the enzyme. The three strictly conserved Cys residues among cyclopropane synthases, C139, C176 and C354 of the E. coli enzyme, were mutated to serine. The relative catalytic efficiency of the mutants were 16% for C139S, 150% for C176S and 63% for C354S. The three mutants were inactivated by DTNB at a rate comparable to the rate of inactivation of the His6-tagged wild-type enzyme, indicating that the Cys responsible for the loss of activity is not one of the conserved residues. Therefore, none of the conserved Cys residues is essential for catalysis and cannot be involved in covalent catalysis or general base catalysis. The inactivation is probably the result of steric hindrance, a phenomenon irrelevant to catalysis. It is very likely that E. coli CFAS operates via a carbocation mechanism, but the base and nucleophile remain to be identified.  相似文献   

4.
Human UDP-GlcNAc: Galbeta1-3GalNAc- (GlcNAc to GalNAc) beta1,6-GlcNAc-transferase (C2GnT1) is a member of a group of beta6-GlcNAc-transferases that belongs to CAZy family 14. One of the striking features of these beta6-GlcNAc-transferases is the occurrence of nine completely conserved cysteine residues that are located throughout the catalytic domain. We have expressed the soluble catalytic domain of human C2GnT1 in insect cells, and isolated active enzyme as a secreted protein. beta-Mercaptoethanol (beta-ME) and dithiothreitol (DTT) were found to stimulate the enzyme activity up to 20-fold, indicating a requirement for a reduced sulfhydryl for activity. When the enzyme was subjected to nonreducing PAGE, the migration of the protein was identical to the migration in reducing gels, demonstrating the absence of intermolecular disulfide bonds. This suggested that the monomer is the active form of the enzyme. Sulfhydryl reagents such as 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and N-ethylmaleimide (NEM) inactivated the enzyme, and the inactivation was partially prevented by prior addition of donor or acceptor substrate and by sulfhydryl reducing agents. We therefore investigated the role of all nine conserved cysteine residues in enzyme stability and activity by site-directed mutagenesis where individual cysteine residues were changed to serine. All of the mutants were expressed as soluble proteins. Seven of the Cys mutants were found to be inactive, while C100S and C217S mutants had 10% and 41% activity, respectively, when compared to the wild-type enzyme. Wild-type and C217S enzymes had similar K(M) and V(max) values for acceptor substrate Galbeta1-3GalNAcalpha-p-nitrophenyl (GGApnp), but the K(M) value for UDP-GlcNAc was higher for C217S than for the wild-type enzyme. In contrast to wild-type enzyme, C217S was not stimulated by reducing agents and was not inhibited by sulfhydryl specific reagents. These results suggest that Cys-217 is a free sulfhydryl in active wild-type enzyme and that Cys-217, although not required for activity, is in or near the active site of the protein. Since seven of the mutations were totally inactive, it is likely that these seven Cys residues play a role in maintaining an active conformation of soluble C2GnT1 by forming disulfide bonds. These bonds are only broken at high concentrations of disulfide reducing agents.  相似文献   

5.
Biosynthesis of mucin-type O-glycans is initiated by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases, which contain several conserved cysteine residues among the isozymes. We found that a cysteine-specific reagent, p-chloromercuriphenylsulfonic acid (PCMPS), irreversibly inhibited one of the isozymes (GalNAc-T1). Presence of either UDP-GalNAc or UDP during PCMPS treatment protected GalNAc-T1 from inactivation, to the same extent. This suggests that GalNAc-T1 contains free cysteine residues interacting with the UDP moiety of the sugar donor. For the functional analysis of the cysteine residues, several conserved cysteine residues in GalNAc-T1 were mutated individually to alanine. All of the mutations except one resulted in complete inactivation or a drastic decrease in the activity, of the enzyme. We identified only Cys212 and Cys214, among the conserved cysteine residues in GalNAc-T1, as free cysteine residues, by cysteine-specific labeling of GalNAc-T1. To investigate the role of these two cysteine residues, we generated cysteine to serine mutants (C212S and C214S). The serine mutants were more active than the corresponding alanine mutants (C212A and C214A). Kinetic analysis demonstrated that the affinity of the serine-mutants for UDP-GalNAc was decreased, as compared to the wild type enzyme. The affinity for the acceptor apomucin, on the other hand, was essentially unaffected. The functional importance of the introduced serine residues was further demonstrated by the inhibition of all serine mutant enzymes with diisopropyl fluorophosphate. In addition, the serine mutants were more resistant to modification by PCMPS. Our results indicate that Cys212 and Cys214 are sites of PCMPS modification, and that these cysteine residues are involved in the interaction with the UDP moiety of UDP-GalNAc.  相似文献   

6.
Human NADH-cytochrome b5 reductase (EC 1.6.2.2) contains 4 cyteine residues (Cys-203, -273, -283, and -297). Cys-283 was previously proposed to be involved in NADH binding by chemical modification (Hackett, C. S., Novoa, W. B., Ozols, J., and Strittmatter, P. (1986) J. Biol. Chem. 261, 9854-9857). In the present study the role of cysteines in the enzyme was probed by replacing these residues by Ser, Ala, or Gly employing site-directed mutagenesis and chemical modification. Four mutants, in which 1 of the 4 Cys residues was replaced by Ser, retained comparable kcat and Km values to those of the wild type. All of these mutants were as sensitive as the wild type to treatment with SH modifiers, while a double mutant, C273S/C283S was resistant. Since inhibition by SH modifiers was protected by NADH, Cys-273 and Cys-283 were implicated to be close to the NADH-binding site. C273A and C273A/C283A mutants showed approximately one-fifth of the enzyme-FAD reduction rate of the wild type as revealed by steady-state kinetics and by stopped-flow analysis. Anaerobic titration has shown that reduction and re-oxidation processes including formation of the red semiquinone of these mutants were not significantly altered from those of the wild type. From these results it was concluded that none of the Cys residues of the enzyme are essential in the catalytic reaction, but Cys-273 conserved among the enzymes homologous to NADH-cytochrome b5 reductase homologous to NADH-cytochrome b5 reductase plays role(s) in facilitating the reaction. A difference spectrum with a peak at 317 nm, which was formerly considered to be derived from the interaction between NAD+ and Cys-283 of the reduced enzyme, appeared upon binding of NAD+ not only to the reduced wild type enzyme but also to the C273A/C283A mutant in which both of the Cys residues close to the NADH-binding site were replaced.  相似文献   

7.
Endospore-forming bacteria (Bacillus and Clostridium spp.) are highly ultraviolet (UV) resistant and repair UV-induced DNA damage in part using the spore-specific DNA repair enzyme spore photoproduct (SP) lyase. SP lyase in all known sporeformers contains four conserved cysteine residues; three absolutely conserved residues are located at the “Radical SAM” consensus (C91xxxC95xxC98), which presumably participates in [4Fe-4S] cluster formation. A fourth conserved cysteine, the function of which is unknown, is located at C141 in SP lyase from all Bacillus spp. sequenced to date. To probe the function of the fourth cysteine, each conserved cysteine in the B. subtilis SP lyase was systematically altered to alanine by site-directed mutagenesis. UV-visible spectroscopy of wild-type and mutant SP lyases indicated that C141 does not participate in [4Fe-4S] formation and redox chemistry; however, in vivo SP lyase activity was abolished in all mutants, indicating an essential role for C141 in SP lyase activity.  相似文献   

8.
Neutral endopeptidase (EC 3.424.11, NEP) is a membrane-bound zinc-metallopeptidase. The substrate specificity and catalytic activity of NEP resemble those of thermolysin, a bacterial zinc-metalloprotease. Comparison of the primary structure of both enzymes suggests that several amino acids present in the active site of thermolysin are also found in NEP. Using site-directed mutagenesis of the cDNA encoding the NEP sequence, we have already shown that His residues 583 and 587 are two of the three zinc ligands. In order to identify the third zinc ligand, we have substituted Val or Asp for Glu616 or Glu646. Val616 NEP showed the same kinetic parameters as the non-mutated NEP. In contrast, the mutant Val646 NEP was almost completely devoid of catalytic activity and unable to bind the tritiated inhibitor [3H]N-[2(R,S)-3-hydroxyaminocarbonyl-2-benzyl-1-oxypropyl]gl ycine, the binding of which is dependent on the presence of the zinc ion. Replacing Glu for Asp at position 646 conserved the negative charge, and the mutant enzyme exhibited the same Km value as the non-mutated enzyme, but kCat was decreased to less than 3% of the value of the non-mutated enzyme. When compared to the non-mutated enzyme Asp646 NEP showed a higher susceptibility to chelating agents, but bound the tritiated inhibitor with the same affinity. Taken together, these observations strongly suggest that Glu646 of NEP is the third zinc-coordinating residue and is equivalent to Glu166 in thermolysin.  相似文献   

9.
Martucci WE  Vargo MA  Anderson KS 《Biochemistry》2008,47(34):8902-8911
The essential enzyme TS-DHFR from Cryptosporidium hominis undergoes an unusually rapid rate of catalysis at the conserved TS domain, facilitated by two nonconserved residues, Ala287 and Ser290, in the folate tail-binding region. Mutation of these two residues to their conserved counterparts drastically affects multiple steps of the TS catalytic cycle. We have determined the crystal structures of all three mutants (A287F, S290G, and A287F/S290G) in complex with active site ligands dUMP and CB3717. The structural data show two effects of the mutations: an increased distance between the ligands in the active site and increased flexibility of the folate ligand in the partially open enzyme state that precedes conformational change to the active catalytic state. The latter effect is able to be rescued by the mutants containing the A287F mutation. In addition, the conserved water network of TS is altered in each of the mutants. The structural results point to a role of the folate tail-binding residues in closely positioning ChTS ligands and restricting ligand flexibility in the partially open state to allow for a rapid transition to the active closed state and enhanced rate of catalysis. These results provide an explanation on how folate tail-binding residues at one end of the active site affect long-range interactions throughout the TS active site and validate these residues as targets for species-specific drug design.  相似文献   

10.
Several variants of Saccharomyces cerevisiae triosephosphate isomerase (yTIM) were studied to determine how mutations of conserved and non-conserved Cys residues affect the enzyme. Wild-type yTIM has two buried free cysteines: Cys 41 (non-conserved) and the invariant Cys 126. Single-site mutants, containing substitutions of these cysteines with Ala, Val, or Ser (the three most conservative changes for a buried Cys, according to substitution matrices), were examined for stability and enzymatic activity. Neither of the Cys residues was found to be essential for enzyme catalysis. Determination of the global stability of the mutants indicated that, regardless of which Cys was substituted, individual Cys→Ala and Cys→Val mutations, as well as the C41S substitution, all decrease the unfolding free energy of the dimeric protein by less than 23 kJ mol(-1) (at 37 °C, pH 7.4), as compared to the wild-type enzyme. In contrast, a substantially larger destabilization (37 kJ mol(-1)) was found in the C126S mutant. These results suggest that, with the exception of C126S, all of these mutations can be regarded as neutral (i.e., mutations that do not impair the reproductive success of the organism). Accordingly, Cys 126 has remained invariant across evolution because its neutral substitutions by Ala or Val would require a highly unlikely, concerted double mutation at any of the Cys codons. Furthermore, detrimental effects to a cell expressing the C126S TIM mutant more likely arise from the high unfolding rate of this enzyme.  相似文献   

11.
Neprilysin 2 (NEP2), a recently identified member of the M13 subfamily of metalloproteases, shares the highest degree of homology with the prototypical member of the family neprilysin. Whereas the study of the in vitro enzymatic activity of NEP2 shows that it resembles that of NEP as it cleaves the same substrates often at the same amide bonds and binds the same inhibitory compounds albeit with different potencies, its physiological role remains elusive because of the lack of selective inhibitors. To aid in the design of these novel compounds and better understand the different inhibitory patterns of NEP and NEP2, the x-ray structure of NEP was used as a template to build a model of the NEP2 active site. The results of our modeling suggest that the overall structure of NEP2 closely resembles that of NEP. The model of the active site reveals a 97% sequence identity with that of NEP with differences located within the S'(2) subsite of NEP2 where Ser(133) and Leu(739) replace two glycine residues in NEP. To validate the proposed model, site-directed mutagenesis was performed on a series of residues of NEP2, mutants expressed in AtT20 cells, and their ability to bind various substrates and inhibitory compounds was tested. The results confirm the involvement of the conserved Arg(131) and Asn(567) in substrate binding and catalytic activity of NEP2 and further show that the modifications in its S'(2) pocket, particularly the presence therein of Leu(739), account for a number of differences in inhibitor binding between NEP and NEP2.  相似文献   

12.
Na/HCO(3) cotransporters (NBCs) such as NBCe1 are members of a superfamily of bicarbonate transporters that includes anion exchangers. Residues within putative transmembrane domain 8 (TMD8) of anion exchanger 1 are involved in ion translocation (Tang, X. B., Kovacs, M., Sterling, D., and Casey, J. R. (1999) J. Biol. Chem. 274, 3557-3564), and the corresponding domain in NBCe1 variants is highly homologous. We performed cysteine-scanning mutagenesis to examine the role of TMD8 residues in ion translocation by rat NBCe1-A. We accessed function and/or sulfhydryl sensitivity and p-chloromercuribenzene sulfonate (pCMBS) accessibility of 21 cysteine-substituted NBC mutants expressed in Xenopus oocytes using the two-electrode, voltage clamp technique. Five NBC mutants displayed <10% wild-type activity: P743C, A744C, L746C, D754C, and T758C. For the remaining 16 mutants, we compared transporter-mediated inward currents elicited by removing external Na(+) before and after exposing oocytes to either 2-aminoethylmethane thiosulfonate (MTSEA) or pCMBS. MTSEA inhibited NBC mutants T748C, I749C, I751C, F752C, M753C, and Q756C by 9-19% and stimulated mutants A739C, A741C, L745C, V747C, Q755C, and I757C by 11-21%. pCMBS mildly inhibited mutants A739C, A740, V747C, and Q756C by 5 or 8%, and stimulated I749C by 10%. However, both sulfhydryl reagents strongly inhibited the L750C mutant by > or =85%. Using the substituted cysteine accessibility method, we examined the accessibility of the NBC mutant L750C under different transporter conditions. pCMBS accessibility is (i) reduced when the transporter is active in the presence of both Na(+) and HCO(3)(-), likely due to substrate competition with pCMBS; (ii) reduced in the presence of a stilbene inhibitor; and (iii) stimulated at more positive membrane potentials. In summary, TMD8 residues of NBCe1, particularly L750, are involved in ion translocation, and accessibility is influenced by the state of transporter activity.  相似文献   

13.
Aromatase (CYP19) catalyzes three consecutive hydroxylation reactions converting C19 androgens to aromatic C18 estrogenic steroids. In this study, five human aromatase mutants (E302D, S478A, S478T, H480K, and H480Q) were prepared using a mammalian cell expression system. These mutants were evaluated by enzyme kinetic analysis, inhibitory profile studies, and reaction intermediate measurements. Three steroidal inhibitors [4-hydroxyandrostenedione (4-OHA), 7alpha-(4'-amino)phenylthio-1,4-androstandiene-3,17-dione (7alpha-APTADD), and bridge (2,19-methyleneoxy) androstene-3,17-dione (MDL 101003)], and four nonsteroidal inhibitors [aminoglutethimide (AG), CGS 20267, ICI D1033, and vorozole (R83842)] were used in the inhibitory profile studies. Our computer model of aromatase suggests that Glu302 is situated in the conserved I-helix region and located near the C-19 position of the steroid substrate. The model was supported by significant changes in kinetic parameters and a sevenfold increase in the Ki value of MDL 101,003 for the mutant E302D. As S478A was found to have kinetic properties similar to the wild-type enzyme and a much higher activity than S478T, Ser478 is thought to be situated in a rather restricted environment. There was a 10-fold increase in the Ki value of 7alpha-APTADD for S478T over that for the wild-type enzyme, suggesting that Ser478 might be near the C-7 position of the substrate. The reaction intermediate analysis revealed that significantly more 19-ol intermediate was generated by both S478A and S478T than the wild-type enzyme. These results would support a hypothesis that Ser478 plays a role in the first and second hydroxylation reactions. A positive charged amino acid is preferred at position 480 as shown by the fact that H480K has a significantly higher activity than H480Q. The Ki value of 4-OHA for H480Q was found to be three times that of the wild-type enzyme. In addition, significantly more 19-ol and 19-al intermediates were detected for both mutants H480K and H480Q than for the wild-type enzyme. Evaluation of the two mutations at His480 allows us to propose that this residue may participate in the aromatization reaction (the third step) by acting as a hydrogen bond donor for the C-3 keto group of the substrate. Furthermore, new products were generated when the enzyme was mutated at Ser478 and His480. Thus, these two residues must play an important role in the catalysis and are likely closer to the substrate binding site than previously predicted.  相似文献   

14.
NADH:ubiquinone oxidoreductases (Complex I) contain a subunit, TYKY in the bovine enzyme and NuoI in the enzyme from Rhodobacter capsulatus, which is assumed to bind two [4Fe-4S] clusters because it contains two sets of conserved cysteine motifs similar to those found in the 2[4Fe-4S] ferredoxins. It was recently shown that the TYKY subunit is not an ordinary 2[4Fe-4S] ferredoxin, but has a unique amino acid sequence, which is only found in NAD(P)H:quinone oxidoreductases and certain membrane-bound [NiFe]-hydrogenases expected to be involved in redox-linked proton translocation [FEBS Lett. 485 (2000) 1]. We have generated a set of R. capsulatus mutants in which five out of the eight conserved cysteine residues in NuoI were replaced by other amino acids. The resulting mutants fell into three categories with virtually no, intermediate or quite normal Complex I activities. EPR-spectroscopic analysis of the membranes of the C67S and C106S mutants, two mutants belonging to the second and third group, respectively, showed a specific 50% decrease of the EPR signal attributed to cluster N2. It is concluded that the NuoI (TYKY) subunit binds two clusters N2, called N2a and N2b, which exhibit very similar spectral features when analyzed by X-band EPR spectroscopy.  相似文献   

15.
Chen BJ  Takeda M  Lamb RA 《Journal of virology》2005,79(21):13673-13684
The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.  相似文献   

16.
The gene encoding Leifsonia alcohol dehydrogenase (LSADH), a useful biocatalyst for producing (R)-chiral alcohols, was cloned from the genomic DNA of Leifsonia sp. S749. The gene contained an opening reading frame consisting of 756 nucleotides corresponding to 251 amino acid residues. The subunit molecular weight was calculated to be 24,999, which was consistent with that determined by polyacrylamide gel electrophoresis. The enzyme was expressed in recombinant Escherichia coli cells and purified to homogeneity by three column chromatographies. The predicted amino acid sequence displayed 30-50% homology to known short chain alcohol dehydrogenase/reductases (SDRs); moreover, the NADH-binding site and the three catalytic residues in SDRs were conserved. The recombinant E. coli cells which overexpressed lsadh produced (R)-form chiral alcohols from ketones using 2-propanol as a hydrogen donor with the highest level of productivity ever reported and enantiomeric excess (e.e.).  相似文献   

17.
Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity.  相似文献   

18.
The multifunctional type II transmembrane glycoprotein, dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5), is expressed by almost all mammalian cells and is identical to the adenosine deaminase binding protein CD26 on lymphocytes. The extracellular part of rat DPPIV can be divided into three domains the middle part of which harbors 10 of the 12 highly conserved cysteine residues. The cysteine-rich domain is responsible for DPPIV-binding to collagen I and to extracellular ADA. The participation of distinct cysteines in disulfide bridges is not yet known. Titration experiments have shown the presence of six free cysteines and three disulfide bridges in native rat DPPIV. To investigate the role of distinct cysteines in the structure-function relationships of rat DPPIV we constructed 12 different cysteine point mutations (C299, C326, C383, C455, C650 mutated to G; C337, C395, C445, C448, C473, C552, C763 mutated to S). Intracellular translocation to the cell surface of stable transfected Chinese hamster ovary cells was examined with antibodies against different epitopes of DPPIV. Surface expression of mutants C326G, C445S and C448S is inhibited totally; mutants C337S, C455G, C473S and C552S show weak expression only. In parallel, the half-life of these mutants is reduced to < 10% compared with wild-type enzyme. We were able to show that the specific peptidase activity of the mutant protein depends on cell-surface expression, dimerization and the existence of a 150-kDa form demonstrable by nondenaturing SDS/PAGE. We conclude that cysteine residues 326, 337, 445, 448, 455, 473 and 552 in rat DPPIV are essential for the correct folding and intracellular trafficking of this glycoprotein, and therefore for its normal biological properties.  相似文献   

19.
Introducing a C(4)-like pathway into C(3) plants is one of the proposed strategies for the enhancement of photosynthetic productivity. For this purpose it is necessary to provide each component enzyme that exerts strong activity in the targeted C(3) plants. Here, a maize C(4)-form phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was engineered for its regulatory and catalytic properties so as to be functional in the cells of C(3) plants. Firstly, amino acid residues Lys-835 and Arg-894 of maize PEPC, which correspond to Lys-773 and Arg-832 of Escherichia coli PEPC, respectively, were replaced by Gly, since they had been shown to be involved in the binding of allosteric inhibitors, malate or aspartate, by our X-ray crystallographic analysis of E. coli PEPC. The resulting mutant enzymes were active but their sensitivities to the inhibitors were greatly diminished. Secondly, a Ser residue (S780) characteristically conserved in all C(4)-form PEPC was replaced by Ala conserved in C(3)- and root-form PEPCs to decrease the half-maximal concentration (S(0.5)) of PEP. The double mutant enzyme (S780A/K835G) showed diminished sensitivity to malate and decreased S(0.5)(PEP) with equal maximal catalytic activity (V(m)) to the wild-type PEPC, which will be quite useful as a component of the C(4)-like pathway to be introduced into C(3) plants.  相似文献   

20.
Squalene epoxidase catalyzes the conversion of squalene to (3S)2,3-oxidosqualene, which is a rate-limiting step of the cholesterol biogenesis. To evaluate the importance of conserved aromatic residues, 15 alanine-substituted mutants were constructed and tested for the enzyme activity. Except F203A, all the mutants significantly lost the enzyme activity, confirming the importance of the residues, either for correct folding of the protein, or for the catalytic machinery of the enzyme. Further, interestingly, F223A mutant no longer accepted (3S)2,3-oxidosqualene as a substrate, while Y473A mutant converted (3S)2,3-oxidosqualene to (3S,22S)2,3:22,23-dioxidosqualene twice more efficiently than wild-type enzyme. It is remarkable that the single amino acid replacement yielded mutants with altered substrate and product specificities. These aromatic residues are likely to be located at the substrate-binding domain of the active-site, and control the stereochemical course of the enzyme reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号