首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an analysis of a follow-up study of a fixed population of 73,330 atomic bomb survivors in Hiroshima and Nagasaki, the slope of an estimated dose response between ionizing radiation and leukemia mortality was found to be steeper (P less than 0.002), by a factor of 2.4, among those who reported epilation within 60 days of the bombings, compared to those who did not experience this sign of acute radiation exposure. The strength of this empirical finding as evidence of biological association in individual radiosensitivity for these two end points is studied here. The major factor complicating the interpretation of this finding as evidence of such an association is the degree of imprecision of the radiation dosimetry system used in assignment of radiation doses to the A-bomb survivors. Using models recently suggested for dealing with dosimetry errors in epidemiological analysis of the A-bomb survivor data, the sensitivity of the apparent association between leukemia mortality and severe epilation to the assumed level of dosimetry error is investigated.  相似文献   

2.
This report presents a reanalysis of the Hiroshima and Nagasaki data on severe epilation as an acute radiation effect using both the new DS86 and the old T65D dosimetries. The focus of the report is on several aspects of the data which have previously been examined by Jablon et al (ABCC TR 12-70, 1970) and Gilbert and Ohara [Radiat. Res. 100, 124-138 (1984)]. The report examines the uniformity of epilation response across shielding category, across sex and age, and in terms of interactions between city, sex, age, and shielding category; it also investigates the apparent relative biological effectiveness (RBE) of neutrons in the DS86 dose compared with the T65D dose, using both within- and between-city information. In addition the report discusses evidence for nonlinearity in epilation response. The epilation response function exhibits nonlinearity in terms of both a marked increase in slope at about 0.75 Gy, and then, beginning at about 2.5 Gy, a leveling off and eventual decrease in response. The principal conclusions of the report are as follows. The use of the DS86 dosimetry rather than T65D increases the apparent RBE of neutrons compared with gamma dose from approximately 5 to 10. At these values of RBE the slope of the dose response, in a middle range from 0.75-2.5 Gy, is about 165% greater using DS86 than T65D. With respect to the interactions of sex, city, and shielding method, the size and significance of virtually all nonuniformities in epilation response seem using T65D are also evident with DS86. Additionally it seems difficult to find any evidence that DS86 is an improved predictor of epilation response over T65D. Finally, the fact that the nonlinearity in dose response and apparent actual downturn in epilation occurrence rate at the high end of dose is more striking with DS86 than with T65D is found to be due primarily to the common practice of truncating all T65D doses to 600 rad.  相似文献   

3.
In the 1940s and 1950s, over 20,000 children in Israel were treated for tinea capitis (scalp ringworm) by irradiation to induce epilation. Follow-up studies showed that the radiation exposure was associated with the development of malignant thyroid neoplasms. Despite this clear evidence of an effect, the magnitude of the dose-response relationship is much less clear because of probable errors in individual estimates of dose to the thyroid gland. Such errors have the potential to bias dose-response estimation, a potential that was not widely appreciated at the time of the original analyses. We revisit this issue, describing in detail how errors in dosimetry might occur, and we develop a new dose-response model that takes the uncertainties of the dosimetry into account. Our model for the uncertainty in dosimetry is a complex and new variant of the classical multiplicative Berkson error model, having components of classical multiplicative measurement error as well as missing data. Analysis of the tinea capitis data suggests that measurement error in the dosimetry has only a negligible effect on dose-response estimation and inference as well as on the modifying effect of age at exposure.  相似文献   

4.
The Radiation Effects Research Foundation has recently implemented a new dosimetry system, DS02, to replace the previous system, DS86. This paper assesses the effect of the change on risk estimates for radiation-related solid cancer and leukemia mortality. The changes in dose estimates were smaller than many had anticipated, with the primary systematic change being an increase of about 10% in gamma-ray estimates for both cities. In particular, an anticipated large increase of the neutron component in Hiroshima for low-dose survivors did not materialize. However, DS02 improves on DS86 in many details, including the specifics of the radiation released by the bombs and the effects of shielding by structures and terrain. The data used here extend the last reported follow-up for solid cancers by 3 years, with a total of 10,085 deaths, and extends the follow-up for leukemia by 10 years, with a total of 296 deaths. For both solid cancer and leukemia, estimated age-time patterns and sex difference are virtually unchanged by the dosimetry revision. The estimates of solid-cancer radiation risk per sievert and the curvilinear dose response for leukemia are both decreased by about 8% by the dosimetry revision, due to the increase in the gamma-ray dose estimates. The apparent shape of the dose response is virtually unchanged by the dosimetry revision, but for solid cancers, the additional 3 years of follow-up has some effect. In particular, there is for the first time a statistically significant upward curvature for solid cancer on the restricted dose range 0-2 Sv. However, the low-dose slope of a linear-quadratic fit to that dose range should probably not be relied on for risk estimation, since that is substantially smaller than the linear slopes on ranges 0-1 Sv, 0-0.5 Sv, and 0- 0.25 Sv. Although it was anticipated that the new dosimetry system might reduce some apparent dose overestimates for Nagasaki factory workers, this did not materialize, and factory workers have significantly lower risk estimates. Whether or not one makes allowance for this, there is no statistically significant city difference in the estimated cancer risk.  相似文献   

5.
The presence of random errors in the individual radiation dose estimates for the A-bomb survivors causes underestimation of radiation effects in dose-response analyses, and also distorts the shape of dose-response curves. Statistical methods are presented which will adjust for these biases, provided that a valid statistical model for the dose estimation errors is used. Emphasis is on clarifying some rather subtle statistical issues. For most of this development the distinction between radiation dose and exposure is not critical. The proposed methods involve downward adjustment of dose estimates, but this does not imply that the dosimetry system is faulty. Rather, this is a part of the dose-response analysis required to remove biases in the risk estimates. The primary focus of this report is on linear dose-response models, but methods for linear-quadratic models are also considered briefly. Some plausible models for the dose estimation errors are considered, which have typical errors in a range of 30-40% of the true values, and sensitivity analysis of the resulting bias corrections is provided. It is found that for these error models the resulting estimates of excess cancer risk based on linear models are about 6-17% greater than estimates that make no allowance for dose estimation errors. This increase in risk estimates is reduced to about 4-11% if, as has often been done recently, survivors with dose estimates above 4 Gy are eliminated from the analysis.  相似文献   

6.
In the 1940s and 1950s, children in Israel were treated for tinea capitis by irradiation to the scalp to induce epilation. Follow-up studies of these patients and of other radiation- exposed populations show an increased risk of malignant and benign thyroid tumors. Those analyses, however, assume that thyroid dose for individuals is estimated precisely without error. Failure to account for uncertainties in dosimetry may affect standard errors and bias dose-response estimates. For the Israeli tinea capitis study, we discuss sources of uncertainties and adjust dosimetry for uncertainties in the prediction of true dose from X-ray treatment parameters. We also account for missing ages at exposure for patients with multiple X-ray treatments, since only ages at first treatment are known, and for missing data on treatment center, which investigators use to define exposure. Our reanalysis of the dose response for thyroid cancer and benign thyroid tumors indicates that uncertainties in dosimetry have minimal effects on dose-response estimation and for inference on the modifying effects of age at first exposure, time since exposure, and other factors. Since the components of the dose uncertainties we describe are likely to be present in other epidemiological studies of patients treated with radiation, our analysis may provide a model for considering the potential role of these uncertainties.  相似文献   

7.
The relationship of ionizing radiation to the age-related ophthalmological findings of the 1978-1980 ophthalmological examination of A-bomb survivors of Hiroshima and Nagasaki has been reanalyzed using DS86 eye organ dose estimates. The main purpose of this reevaluation was to determine whether age and radiation exposure, as measured using the recently revised dosimetry information (DS86), have an additive, synergistic, or antagonistic effect. The data in this study are limited to axial opacities and posterior subcapsular changes, for which a definite radiation-induced effect has been observed in Hiroshima and Nagasaki A-bomb survivors. The best model fitting for axial opacities gives a significant positive effect for both linear dose and linear age-related regression coefficients and a significant negative effect for an interaction between radiation dose and age. Such a negative interaction implies an antagonistic effect in that the relative risks in relation to radiation exposure doses become smaller with an increase in age. On the other hand, the best-fitting relationship for posterior subcapsular changes suggested a linear-quadratic dose and linear age-related effect. The estimate of the quadratic dose coefficient shows a highly negative correlation with age, but the negative quadratic dose term is extremely small and is of little biological significance.  相似文献   

8.
Chromosome data pertaining to blood samples from 1,703 survivors of the Hiroshima and Nagasaki A-bombs, were utilized and different models for chromosome aberration dose response investigated. Models applied included those linear or linear-quadratic in equivalent dose. Models in which neutron and gamma doses were treated separately (LQ-L model) were also used, which included either the use of a low-dose limiting value for the relative biological effectiveness (RBE) of neutrons of R(0)=70+/-10 or an RBE value of R(1)=15+/-5 at 1 Gy. The use of R(1) incorporates the assumption that it is much better known than R(0), with much less associated uncertainty. In addition, error-reducing transformations were included which were found to result in a 50% reduction of the standard error associated with one of the model fit parameters which is associated with the proportion of cells with at least one aberration, at 1 Gy gamma dose. Several justifiable modifications to the DS86 doses according to recent nuclear retrospective dosimetry measurements were also investigated. Gamma-dose modifications were based on published thermoluminescence measurements of quartz samples from Hiroshima and on a tentative reduction for Nagasaki factory worker candidates by a factor of 0.6. Neutron doses in Hiroshima were modified to become consistent with recent fast neutron activation data based on copper samples. The applied dose modifications result in an increase in non-linearity of the dose-response curve for Hiroshima, and a corresponding decrease in that for Nagasaki, an effect found to be most pronounced for the LQ-L models investigated. As a result the difference in the dose-response curves observed for both cities based on DS86 doses, is somewhat reduced but cannot be entirely explained by the dose modifications applied. The extent to which the neutrons contribute to chromosome aberration induction in Hiroshima depends significantly on the model used. The LQ-L model including an R(1) value of 15 at 1 Gy which is recommended here, would predict between 10% and 20% of the observed chromosome aberrations to be due to neutrons, at all doses. Because of the good agreement between DS86 predictions and the results of retrospective gamma and neutron dosimetry, the modifications applied here to DS86 doses are relatively small. Consequently, the choices of model and RBE values were found to be the major factors dominating the interpretation of the chromosome data for Hiroshima and Nagasaki, with the dose modifications resulting in a smaller influence.  相似文献   

9.
This paper investigates the quantitative relationship of ionizing radiation to the occurrence of posterior lenticular opacities among the survivors of the atomic bombings of Hiroshima and Nagasaki suggested by the DS86 dosimetry system. DS86 doses are available for 1983 (93.4%) of the 2124 atomic bomb survivors analyzed in 1982. The DS86 kerma neutron component for Hiroshima survivors is much smaller than its comparable T65DR component, but still 4.2-fold higher (0.38 Gy at 6 Gy) than that in Nagasaki (0.09 Gy at 6 Gy). Thus, if the eye is especially sensitive to neutrons, there may yet be some useful information on their effects, particularly in Hiroshima. The dose-response relationship has been evaluated as a function of the separately estimated gamma-ray and neutron doses. Among several different dose-response models without and with two thresholds, we have selected as the best model the one with the smallest x2 or the largest log likelihood value associated with the goodness of fit. The best fit is a linear gamma-linear neutron relationship which assumes different thresholds for the two types of radiation. Both gamma and neutron regression coefficients for the best fitting model are positive and highly significant for the estimated DS86 eye organ dose.  相似文献   

10.
Frequencies of stable chromosome aberrations from more than 3,000 atomic bomb survivors were used to examine the nature of the radiation dose response. The end point was the proportion of cells with at least one translocation or inversion detected in Giemsa-stained cultures of approximately 100 lymphocytes per person. The statistical methods allow for both imprecision of individual dose estimates and extra-binomial variation. A highly significant and nonlinear dose response was seen. The shape of the dose response was concave upward for doses below 1.5 Sv but exhibited some leveling off at higher doses. This curvature was similar for the two cities, with a crossover dose (i.e. the ratio of the linear coefficient to the quadratic coefficient) of 1.7 Sv (95% CI 0.9, 4). The low-dose slopes for the two cities differed significantly: 6.6% per Sv (95% CI 5.5, 8.4) in Hiroshima and 3.7% (95% CI 2.6, 4.9) in Nagasaki. This difference was reduced considerably, but not eliminated, when the comparison was limited to people who were exposed in houses or tenements. Nagasaki survivors exposed in factories, as well as people in either city who were outside with little or no shielding, had a lower dose response than those exposed in houses. This suggests that doses for Nagasaki factory worker survivors may be overestimated by the DS86, apparently by about 60%. Even though factory workers constitute about 20% of Nagasaki survivors with dose estimates in the range of 0.5 to 2 Sv, calculations indicate that the dosimetry problems for these people have little impact on cancer risk estimates for Nagasaki.  相似文献   

11.
The aim of this study was to evaluate the use of dose difference maps with a convolutional neural network (CNN) to detect multi-leaf collimator (MLC) positional errors in patient-specific quality assurance for volumetric modulated radiation therapy (VMAT). A cylindrical three-dimensional detector (Delta4, ScandiDos, Uppsala, Sweden) was used to measure 161 beams from 104 clinical prostate VMAT plans. For the simulation used error-free plans plus plans with two types of MLC error were introduced: systematic error and random error. A total of 483 dose distributions in a virtual cylindrical phantom were calculated with a treatment planning system. Dose difference maps were created from two planar dose distributions from the measured and calculated dose distributions, and these were used as the input for the CNN, with 375 datasets assigned for training and 108 datasets assigned for testing. The CNN model had three convolution layers and was trained with five-fold cross-validation. The CNN model classified the error types of the plans as “error-free,” “systematic error,” or “random error,” with an overall accuracy of 0.944. The sensitivity values for the “error-free,” “systematic error,” and “random error” classifications were 0.889, 1.000, and 0.944, respectively, and the specificity values were 0.986, 0.986, and 0.944, respectively. This approach was superior to those based on gamma analysis. Using dose difference maps with a CNN model may provide an effective solution for detecting MLC errors for patient-specific VMAT quality assurance.  相似文献   

12.
As a result of the reassessment of the A-bomb dosimetry, new (DS86) doses were calculated in 1986. In this paper, site-specific estimates of cancer mortality in the years 1950-1985, based on these new doses, are compared with those using the T65DR doses. The subjects of the study are 75,991 members of the Life Span Study sample for whom DS86 doses have been calculated. This reevaluation of the exposures does not change the list of radiation-related cancers. Most differences in dose response between Hiroshima and Nagasaki are no longer significant with the DS86 doses. The dose-response curve is closer to linear with the DS86 than the T65DR doses even for leukemia in the entire dose range, though, statistically, many other models cannot be excluded. However, in the low-dose range, the risk of leukemia remains nonlinear. Assuming a linear model at an RBE of 1, and using organ-absorbed doses, the risk coefficients derived from the two dosimetries are very similar, whereas those based on shielded kerma are about 40% higher with the new dosimetry. If RBE values larger than 1 are assumed, the disparity between the two dosimetries increases because the neutron dose is much greater in the T65DR. At an RBE of 10, for the five specific cancers, i.e., female breast, colon, leukemia, lung, and stomach, the increase in excess number of deaths per 10(4) PYSv under the DS86 varies from 12% (colon) to 133% (female breast). The magnitude of the effects of such modifiers of radiation-induced cancer as age at time of bomb and sex do not differ between the two dose systems.  相似文献   

13.
As a result of joint efforts by Japanese, US and German scientists, the Dosimetry System 2002 (DS02) was developed as a new dosimetry system, to evaluate individual radiation dose to atomic bomb survivors in Hiroshima and Nagasaki. Although the atomic bomb radiation consisted of initial radiation and residual radiation, only initial radiation was reevaluated in DS02 because, for most survivors in the life span study group, the residual dose was negligible compared to the initial dose. It was reported, however, that there were individuals who entered the city at the early stage after the explosion and experienced hemorrhage, diarrhea, etc., which were symptoms of acute radiation syndrome. In this study, external exposure due to radionuclides induced in soil by atomic bomb neutrons was reevaluated based on DS02 calculations, as a function of both the distance from the hypocenters and the elapsed time after the explosions. As a result, exposure rates of 6 and 4 Gy h(-1) were estimated at the hypocenter at 1 min after the explosion in Hiroshima and Nagasaki, respectively. These exposure rates decreased rapidly by a factor of 1,000 1 day later, and by a factor of 1 million 1 week later. Maximum cumulative exposure from the time of explosion was 1.2 and 0.6 Gy at the hypocenters in Hiroshima and Nagasaki, respectively. Induced radiation decreased also with distance from the hypocenters, by a factor of about 10 at 500 m and a factor of three to four hundreds at 1,000 m. Consequently, a significant exposure due to induced radiation is considered feasible to those who entered the area closer to a distance of 1,000 m from the hypocenters, within one week after the bombing.  相似文献   

14.
This paper discusses practical effects of dosimetry error relevant to the design and analysis of an epidemiological study of disease risk and exposure. It focuses on shared error in radiation dose estimates for such studies as the Hanford Thyroid Disease Study or the Utah Thyroid Cohort Study, which use complex dosimetry systems that produce multiple replications of possible dose for the cohort. We argue that a simple estimation of shared multiplicative error components through direct examination of the replications of dose for each person provides information useful for estimating the power of a study to detect a radiation effect and illustrate this with an example based on the doses used for the Hanford Thyroid Disease Study. Uncertainty analysis (construction of confidence intervals) can be approached in the same way in simple cases. We also offer some suggestions for Monte Carlo-based confidence intervals.  相似文献   

15.
In a previous paper, Takamiya et al. calculated 63Ni production in copper samples exposed to the Hiroshima atomic bomb. More specifically, they used their experimental cross-section values of the 63Cu(n,p)63Ni reaction and compared the result with that of the corresponding calculation in the radiation dosimetry system DS02, which used another set of cross-section values. These results were different, and the following two reasons were found: typographical errors in several energy boundary values in the DS02 report that was also used in the calculation by Takamiya et al. and an inappropriate assumption on the cross-section values of the low neutron energy region in the calculation by Takamiya et al. These two issues are described and amended in the present report.  相似文献   

16.
Risk estimates for radiation-induced late effects are relevant to various considerations in radiation protection. Most of these considerations relate to small doses for which no excess risk can be seen even in extensive epidemiological studies. Risk coefficients for radiation protection must, therefore, be based on uncertain extrapolation of observations obtained at moderate or high doses. The extrapolation can not be replaced, as yet, by new, more direct information on processes such as radiation-induced genetic instability or adaptive response. While the new findings indicate complexities that may be highly relevant to the effectiveness- or lack of effectiveness- of radiation at low doses, they remain insufficiently understood to permit a decision as to whether dose-effect relations are linear, curvilinear, or have a threshold in dose. In view of these uncertainties radiation-protection regulations are, today, based on the conservative assumption of a linear dose dependence without threshold. This approach assures a sufficient degree of protection, but it may become unreasonably over-conservative, when the cautious hypothesis is treated as proven fact, and when-in addition-the assumed initial slope of the dose relation is not critically evaluated. A reliable evaluation needs to be based on the follow-up of the atom-bomb bomb survivors, and several major aspects of current interest are discussed here. a) Mortality from solid tumours in Hiroshima shows a statistically significant excess at a colon dose of 50 mGy; however, it is likely that this is the result of a bias in assigning causes of death. b) The solid cancer mortality data of the atom-bomb survivors are consistent with linearity in dose, but they can be shown to be equally consistent with a considerable degree of curvature. c) Even with the present dosimetry system, DS86, a substantial part of the effect at small doses in Hiroshima could be due to neutrons. If this is the case, the risk estimates for gamma-rays need to be accordingly decreased. d) Numerous neutron-activation measurements in Hiroshima indicate that the DS86 underestimates the neutron doses. The evidence is, up to now, based only on activation products of low energy neutrons, but efforts are currently underway to determine activation products of high energy neutrons. If these measurements should substantiate the present trend, the cancer data in Hiroshima would cease to be reliable proof of an effect of gamma-rays at low doses. Instead the dose dependence for gamma-rays could be purely quadratic, and any initial slope in the linear-quadratic dependence might well be attributable to neutrons only.  相似文献   

17.

Aim

The aim of this study was to investigate the sensitivity of the trajectory log file based quality assurance to detect potential errors such as MLC positioning and gantry positioning by comparing it with EPID measurement using the most commonly used criteria of 3%/3?mm.

Materials and methods

An in-house program was used to modified plans using information from log files, which can then be used to recalculate a new dose distribution. The recalculated dose volume histograms (DVH) were compared with the originals to assess differences in target and critical organ dose. The dose according to the differences in DVH was also compared with dosimetry from an electronic portal imaging device.

Results

In all organs at risk (OARs) and planning target volumes (PTVs), there was a strong positive linear relationship between MLC positioning and dose error, in both IMRT and VMAT plans. However, gantry positioning errors exhibited little impact in VMAT delivery. For the ten clinical cases, no significant correlations were found between gamma passing rates under the criteria of 3%/3?mm for the composite dose and the mean dose error in DVH (r?<?0.3, P?>?0.05); however, a significant positive correlation was found between the gamma passing rate of 3%/3?mm (%) averaged over all fields and the mean dose error in the DVH of the VMAT plans (r?=?0.59, P?<?0.001).

Conclusions

This study has successfully shown the sensitivity of the trajectory log file to detect the impact of systematic MLC errors and random errors in dose delivery and analyzed the correlation of gamma passing rates with DVH.  相似文献   

18.
Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. Industrial radiographers are among the radiation workers who receive the highest individual occupational radiation doses. To assess occupationally induced chromosomal damage, we performed the cytokinesis-block micronucleus (CBMN) assay in peripheral lymphocytes of 29 male industrial radiographers, exposed to ionizing radiation for 12.8 years+/-11.2, in comparison with 24 gender-, age-, and smoking habits-matched controls. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 17 exposed subjects and 17 controls randomized from the initial populations. The mean cumulative equivalent dose, recorded by film dosimeters, was 67.2 mSv+/-49.8 over the past 5 years. The mean micronucleated binucleated cell rate (MCR) was significantly higher in the industrial radiographers than in the controls (10.7 per thousand +/-5.2 versus 6.6 per thousand +/-3.1, P=0.009); this difference was due to a significantly higher frequency of centromere-negative micronuclei (C-MN) in exposed subjects than in controls (8.5 per thousand +/-4.9 versus 2.2 per thousand +/-1.6, P<0.001). The two populations did not significantly differ in centromere-positive micronuclei (C+MN) frequency. These findings demonstrate a clastogenic effect in lymphocytes of industrial radiographers. MCR significantly positively correlated with age in the two groups. After correction for the age effect, MCR did not correlate with duration of occupational exposure. No correlation between radiation doses and MCR, C-MN, and C+MN frequencies was observed. In addition to physical dosimetry records, the enhanced chromosomal damage in lymphocytes of industrial radiographers emphasizes the importance of radiation safety programs.  相似文献   

19.
The management of radiation injuries following a catastrophic event where large numbers of people may have been exposed to life-threatening doses of ionizing radiation will rely critically on the availability and use of suitable biodosimetry methods. In vivo electron paramagnetic resonance (EPR) tooth dosimetry has a number of valuable and unique characteristics and capabilities that may help enable effective triage. We have produced a prototype of a deployable EPR tooth dosimeter and tested it in several in vitro and in vivo studies to characterize the performance and utility at the state of the art. This report focuses on recent advances in the technology, which strengthen the evidence that in vivo EPR tooth dosimetry can provide practical, accurate, and rapid measurements in the context of its intended use to help triage victims in the event of an improvised nuclear device. These advances provide evidence that the signal is stable, accurate to within 0.5 Gy, and can be successfully carried out in vivo. The stability over time of the radiation-induced EPR signal from whole teeth was measured to confirm its long-term stability and better characterize signal behavior in the hours following irradiation. Dosimetry measurements were taken for five pairs of natural human upper central incisors mounted within a simple anatomic mouth model that demonstrates the ability to achieve 0.5 Gy standard error of inverse dose prediction. An assessment of the use of intact upper incisors for dose estimation and screening was performed with volunteer subjects who have not been exposed to significant levels of ionizing radiation and patients who have undergone total body irradiation as part of bone marrow transplant procedures. Based on these and previous evaluations of the performance and use of the in vivo tooth dosimetry system, it is concluded that this system could be a very valuable resource to aid in the management of a massive radiological event.  相似文献   

20.
It was shown that the number of lymphocytes migrating to the blood 3 h after the administration of dextran sulphate (DS) is a function of the radiation dose absorbed (up to 1.5 Gy). It is supposed that 3 populations of lymphocytes varying in radiosensitivity are present in the blood. The authors suggest that it is possible to estimate the degree of the radiation damage according to the number of lymphocytes circulating in the blood under the effect of DS. It was also shown that the number of CFUc in the blood after the injection of DS is a function of the radiation dose absorbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号