首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The nuclear lamina is a protein meshwork lining the inner nuclear membrane, which contains a polymer of nuclear lamins associated with transmembrane proteins of the inner nuclear membrane. The lamina is involved in nuclear structure, gene expression, and association of the cytoplasmic cytoskeleton with the nucleus. We previously identified a group of 67 novel putative nuclear envelope transmembrane proteins (NETs) in a large-scale proteomics analysis. Because mutations in lamina proteins have been linked to several human diseases affecting skeletal muscle, we examined NET expression during differentiation of C2C12 myoblasts. Our goal was to identify new nuclear envelope and lamina components whose expression is coordinated with muscle differentiation.  相似文献   

2.
Induction of cytochrome P-450s by 3-methylcholanthrene (MC) and phenobarbital (PB) and distribution of P-450s in the rat liver nuclear envelope were investigated by biochemical analyses and ferritin immunoelectron microscopy using specific antibodies against the major molecular species of MC- and PB-induced cytochrome P-450. It was found, in agreement with Kasper (J. Biol. Chem., 1971, 246: 577-581), that the total amount of cytochrome P-450s determined by biochemical analysis was markedly increased by MC, but not by PB, treatment. Immunoelectron microscopic analysis, however, showed marked and slight increases in ferritin labeling by MC and PB treatment, respectively. The latter finding was interpreted as resulting from the induction of a particular molecular species of PB-induced cytochrome P-450s. Ferritin immunoelectron microscopic analysis of intact isolated nuclei, naked nuclei from which the outer membrane of the nuclear envelope was partially detached (mechanically), and isolated nuclear envelopes have shown that the ferritin particles are found exclusively on the cytoplasmic face of the outer nuclear envelopes. Neither the nucleoplasmic face of the inner membrane of the nuclear envelope nor the cisternal face of both membranes of the nuclear envelope showed any labeling with ferritin. This indicates that cytochrome P-450 is located only on the outer membrane of the nuclear envelope and does not diffuse laterally into the domain of the inner membrane of the nuclear envelope across the nuclear pores. Our results suggest that a marked heterogeneity exists in the enzyme distribution between the outer and inner membrane of the nuclear envelope and that microsomal marker enzymes such as cytochrome P-450 exist exclusively in the outer membrane. In addition, it appears that cytochrome P-450 is probably not a transmembrane protein but an intrinsic protein located on the cytoplasmic face of the outer membrane of the nuclear envelope.  相似文献   

3.
Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission.  相似文献   

4.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

5.
The insertion of newly synthesized proteins into the outer membrane of Escherichia coli has been examined. The results show that there is no precurser pool of outer membrane proteins in the cytoplasmic membrane because first, the incorporation of a [35S]methionine pulse into outer membrane proteins completely parallels its incorporation into cytoplasmic membrane proteins, and second, under optimal isolation conditions, no outer membrane proteins are found in the cytoplasmic membrane, even when the membranes are analysed after being labeled for only 15 s. The [35S]methionine present in the outer membrane after a pulse of 15 s was found in protein fragments of varying sizes rather than in specific outer membrane proteins. This label could however be chased into specific proteins within 30--120 s, depending on the size of the protein, indicating that although unfinished protein fragments were present in the outer membrane, they were completed by subsequent chain elongation. Thus, outer membrane proteins are inserted into the outer membrane while still attached to ribosomes. Since ribosomes which are linked to the cell envelope by nascent polypeptide chains are stationary, the mRNA which is being translated by these ribosomes moves along the inner cell surface.  相似文献   

6.
The insertion of newly synthesized proteins into the outer membrane of Escherichia coli has been examined. The results show that there is no precursor pool of outer membrane proteins in the cytoplasmic membrane because first, the incorporation of a [35S]methionine pulse into outer membrane proteins completely parallels its incorporation into cytoplasmic membrane proteins, and second, under optimal isolation conditions, no outer membrane proteins are found in the cytoplasmic membrane, even when the membranes are analysed after being labeled for only 15 s.The [35S]methionine present in the outer membrane after a pulse of 15 s was found in protein fragments of varying sizes rather than in specific outer membrane proteins. This label could however be chased into specific proteins within 30–120 s, depending on the size of the protein, indicating that although unfinished protein fragments were present in the outer membrane, they were completed by subsequent chain elongation.Thus, outer membrane proteins are inserted into the outer membrane while still attached to ribosomes. Since ribosomes which are linked to the cell envelope by nascent polypeptide chains are stationary, the mRNA which is being translated by these ribosomes moves along the inner cell surface.  相似文献   

7.
The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.  相似文献   

8.
Herpesvirus capsids originating in the nucleus overcome the nucleocytoplasmic barrier by budding at the inner nuclear membrane. The fate of the resulting virions is still under debate. The fact that capsids approach Golgi membranes from the cytoplasmic side led to the theory of fusion between the viral envelope and the outer nuclear membrane, resulting in the release of capsids into the cytoplasm. We recently discovered a continuum from the perinuclear space to the Golgi complex implying (i) intracisternal viral transportation from the perinuclear space directly into Golgi cisternae and (ii) the existence of an alternative pathway of capsids from the nucleus to the cytoplasm. Here, we analyzed the nuclear surface by high-resolution microscopy. Confocal microscopy of MDBK cells infected with recombinant bovine herpesvirus 1 expressing green fluorescent protein fused to VP26 (a minor capsid protein) revealed distortions of the nuclear surface in the course of viral multiplication. High-resolution scanning and transmission electron microscopy proved the distortions to be related to enlargement of nuclear pores through which nuclear content including capsids protrudes into the cytoplasm, suggesting that capsids use impaired nuclear pores as gateways to gain access to the cytoplasmic matrix. Close examination of Golgi membranes, rough endoplasmic reticulum, and outer nuclear membrane yielded capsid-membrane interaction of high identity to the budding process at the inner nuclear membrane. These observations signify the ability of capsids to induce budding at any cell membrane, provided the fusion machinery is present and/or budding is not suppressed by viral proteins.  相似文献   

9.
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In Gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these ‘self-sufficient’ pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.  相似文献   

10.
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these 'self-sufficient' pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.  相似文献   

11.
The presence and localization of lectin receptor sites on rat liver cell nuclear and other endomembranes was studied by light and electron microscopy using fluorescein and ferritin-coupled lectin conjugates. Isolated nuclei labelled with fluorescein-conjugated Concanavalin A (Con A) or wheat germ agglutinin (WGA) often showed membrane staining, which sometimes was especially bright on small stretches of the nuclear surface. Unlabelled nuclei and nuclei with a complete ring fluorescence were also seen. The nuclear fluorescence corresponded in intensity to that seen on the surface of isolated rat liver cells. Con A-ferritin particles were seldom detected on the cytoplasmic surface of the intact nuclear envelope. However, at places where the 2 leaflets of the envelope were widely separated or where the outer nuclear membrane was partly torn away, heavy labelling was seen on the cisternal surface of both the inner and outer nuclear membranes. Labelling with Con A-ferritin was also found on the cisternal side of rough endoplasmic reticulum present in the specimens. No labelling was seen on the cytoplasmic surface of mitochondrial outer membrane. The results demonstrate the presence of binding sites for Con A and WGA in nuclei and an asymmetric localization of these sites on the cisternal side of ribosome-carrying endomembranes in rat liver cells.  相似文献   

12.
H M Li  T Moore    K Keegstra 《The Plant cell》1991,3(7):709-717
The chloroplastic envelope is composed of two membranes, inner and outer, each with a distinct set of polypeptides. Like proteins in other chloroplastic compartments, most envelope proteins are synthesized in the cytosol and post-translationally imported into chloroplasts. Considerable knowledge has been obtained concerning protein import proteins. We isolated a cDNA clone from pea that encodes a 14-kilodalton outer envelope membrane protein. The precursor form of this protein does not possess a cleavable transit peptide and its import into isolated chloroplasts does not require either ATP or a thermolysin-sensitive component on the chloroplastic surface. These findings, together with similar observations made with a spinach chloroplastic outer membrane protein, led us to propose that proteins destined for the outer membrane of the chloroplastic envelope follow an import pathway distinct from that followed by proteins destined for other chloroplastic compartments.  相似文献   

13.
King MC  Drivas TG  Blobel G 《Cell》2008,134(3):427-438
In the fission yeast S. pombe, nuclei are actively positioned at the cell center by microtubules. Here, we show that cytoplasmic microtubules are mechanically coupled to the nuclear heterochromatin through proteins embedded in the nuclear envelope. This includes an integral outer nuclear membrane protein of the KASH family (Kms2) and two integral inner nuclear membrane proteins, the SUN-domain protein Sad1 and the previously uncharacterized protein Ima1. Ima1 specifically binds to heterochromatic regions and promotes the tethering of centromeric DNA to the SUN-KASH complex. In the absence of Ima1, or in cells harboring mutations in the centromeric Ndc80 complex, inefficient coupling of centromeric heterochromatin to Sad1 leads to striking defects in the ability of the nucleus to tolerate microtubule-dependent forces, leading to changes in nuclear shape, loss of spindle pole body components from the nuclear envelope, and partial dissociation of SUN-KASH complexes. This work highlights a framework for communication between cytoplasmic microtubules and chromatin.  相似文献   

14.
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.  相似文献   

15.
Separation on the basis of molecular weight resolved three proteins specific to the swarmer cell of Hyphomonas jannaschiana. In the reproductive cell, 4 major proteins were identified as cytoplasmic and 10 were identified as envelope. Of these envelope proteins, one was common to both the inner and outer membranes, four were common to the inner membrane, and five were common to the outer membrane. Four of these outer membrane proteins were specific to the reproductive cell, and two of these proteins, with apparent molecular weights of 116,000 and 29,000, constituted 19% of the total cell protein and 54% of the outer membrane protein.  相似文献   

16.
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis.  相似文献   

17.
Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  相似文献   

18.
In Gram-negative bacteria, all components of the outer membrane are synthesized in the cytoplasm or the cytoplasmic leaflet of the inner membrane and must thus traverse the inner membrane and the periplasm on the way to their final destination. In this study, we show Imp/OstA to have characteristics typical for proteins involved in envelope biogenesis. Imp is essential and forms a high-molecular-weight disulphide-bonded complex in the outer membrane. Upon depletion of Imp, lipids and outer membrane proteins appear in a novel membrane fraction with higher density than the outer membrane. We propose Imp to be part of a targeting/usher system for components of the outer membrane.  相似文献   

19.
R Gilbert  K Ghosh  L Rasile    H P Ghosh 《Journal of virology》1994,68(4):2272-2285
We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.  相似文献   

20.
Herpes simplex virus (HSV) nucleocapsids acquire an envelope by budding through the inner nuclear membrane, but it is uncertain whether this envelope is retained during virus maturation and egress or whether mature progeny virions are derived by deenvelopment at the outer nuclear membrane followed by reenvelopment in a cytoplasmic compartment. To resolve this issue, we used immunogold electron microscopy to examine the distribution of glycoprotein D (gD) in cells infected with HSV-1 encoding a wild-type gD or a gD which is retrieved to the endoplasmic reticulum (ER). In cells infected with wild-type HSV-1, extracellular virions and virions in the perinuclear space bound approximately equal amounts of gD antibody. In cells infected with HSV-1 encoding an ER-retrieved gD, the inner and outer nuclear membranes were heavily gold labeled, as were perinuclear enveloped virions. Extracellular virions exhibited very little gold decoration (10- to 30-fold less than perinuclear virions). We conclude that the envelope of perinuclear virions must be lost during maturation and egress and that mature progeny virions must acquire an envelope from a post-ER cytoplasmic compartment. We noted also that gD appears to be excluded from the plasma membrane in cells infected with wild-type virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号