首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood flow governs transport of oxygen and nutrients into tissues. Hypoxic tissues secrete VEGFs to promote angiogenesis during development and in tissue homeostasis. In contrast, tumors enhance pathologic angiogenesis during growth and metastasis, suggesting suppression of tumor angiogenesis could limit tumor growth. In line with these observations, various factors have been identified to control vessel formation in the last decades. However, their impacts on the vascular transport properties of oxygen remain elusive. Here, we take a computational approach to examine the effects of vascular branching on blood flow in the growing vasculature. First of all, we reconstruct a 3D vascular model from the 2D confocal images of the growing vasculature at postnatal day 5 (P5) mouse retina, then simulate blood flow in the vasculatures, which are obtained from the gene targeting mouse models causing hypo- or hyper-branching vascular formation. Interestingly, hyper-branching morphology attenuates effective blood flow at the angiogenic front, likely promoting tissue hypoxia. In contrast, vascular hypo-branching enhances blood supply at the angiogenic front of the growing vasculature. Oxygen supply by newly formed blood vessels improves local hypoxia and decreases VEGF expression at the angiogenic front during angiogenesis. Consistent with the simulation results indicating improved blood flow in the hypo-branching vasculature, VEGF expression around the angiogenic front is reduced in those mouse retinas. Conversely, VEGF expression is enhanced in the angiogenic front of hyper-branching vasculature. Our results indicate the importance of detailed flow analysis in evaluating the vascular transport properties of branching morphology of the blood vessels.  相似文献   

2.
Angiogenesis is a process modulated by several endogenous vascular growth factors as well as by oxygen conditions. For example VEGF failed to induce useful therapeutic angiogenesis in clinical trials. We used a combinatory phage display peptide library screening on human umbilical endothelial cells under normoxia and hypoxia conditions in order to identify novel peptides that bind endothelial cells. The identified peptides induced angiogenesis as demonstrated by endothelial cell proliferation, migration and tube formation. Injection of peptides into the ears of mice resulted in increased numbers of blood vessels. Peptides did not induce VEGF receptor gene expression indicating a possible VEGF unrelated mechanism.  相似文献   

3.
Beilmann M  Birk G  Lenter MC 《Cytokine》2004,26(4):178-185
Therapeutic angiogenesis aims to induce blood vessel growth in acute or chronic ischemic tissues and has gained tremendous interest over the last years. To study factors and combinations thereof that potentially induce or modify angiogenesis and to evaluate their therapeutic potential, various in vitro assays have been developed. Although endothelial cells have attracted most attention in these assays, they alone cannot complete vessel maturation since extracellular matrix (ECM) components and mesenchymal cells also play an important role in vascular development. To address this complexity we focussed on a human co-culture angiogenesis assay comprising primary endothelial cells as well as primary ECM-producing fibroblasts. In this assay HGF and VEGF as single factors and combined were tested for the potential to induce an angiogenic response, which was detected by image analysis assessing the area, length and branches of the formed vascular structures. The results show that the cytokines HGF and VEGF both promote angiogenesis in this co-culture assay by inducing distinguishable patterns of vascular structures. VEGF increases the length, area and branch point number of induced vessels whereas HGF mediates exclusively vascular area growth resulting in vascular structures of enlarged diameter. Moreover, the combination of both cytokines results in an additive increase of vascular diameter.  相似文献   

4.
Blood vessel development and network patterning are controlled by several signaling molecules, including VEGF, FGF, TGF‐ß, and Ang‐1,2. Among these, the role of VEGF‐A signaling in vessel morphogenesis is best understood. The biological activity of VEGF‐A depends on its reaction with specific receptors Flt1 and Flk1. Roles of VEGF‐A signaling in endothelial cell proliferation, migration, survival, vascular permeability, and induction of tip cell filopodia have been reported. In this study, we have generated Flt1‐tdsRed BAC transgenic (Tg) mice to monitor Flt1 gene expression during vascular development. We show that tdsRed fluorescence is observed within blood vessels of adult mice and embryos, indicative of retinal angiogenesis and tumor angiogenesis. Flt1 expression recapitulated by Flt1‐tdsRed BAC Tg mice overlapped well with Flk1, while Flt1 was expressed more abundantly in endothelial cells of large blood vessels such as dorsal aorta and presumptive stalk cells in retina, providing a unique model to study blood vessel development. genesis 50:561–571, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
微血管密度异常、血管生长因子(VEGF、PDGF等)及其受体表达异常通过一系列级联反应导致血管异常生长的结果。众多因子均和血管形成有关,在妊娠过程中对胎盘的血管发育有着重要的作用,导致滋养细胞的表型转换障碍、血管结构发育不良、血管生成受阻、血管数目减少,引起胎盘血管重铸障碍,胎儿胎盘单位灌注不足发生流产。研究表明许多自然流产的发生与胎盘组织中血管增生平衡和胎儿血液供应不足有密切关系,从而认为血管生长异常是导致流产的又一重要因素。随着研究的深入进展血管的异常生长与流产的关系是有确定关系的,对于血管生长异常所致的流产,抑制血管各种血管因子的形成、阻止其与受体结合,从而抑制血管的异常生长最终达到克服流产的发展,无异于把幸福带给更多的家庭,不仅是妇产科发展的里程碑,更是人类医学发展史上光辉的一笔。  相似文献   

6.
Paracrine interactions between endothelial cells (EC) and mural cells act as critical regulators of vessel wall assembly, vessel maturation and define a plasticity window for vascular remodeling. The present study was aimed at studying blood vessel maturation processes in a novel 3-dimensional spheroidal coculture system of EC and smooth muscle cells (SMC). Coculture spheroids differentiate spontaneously in a calcium-dependent manner to organize into a core of SMC and a surface layer of EC, thus mimicking the physiological assembly of blood vessels with surface lining EC and underlying mural cells. Coculture of EC with SMC induces a mature, quiescent EC phenotype as evidenced by 1) a significant increase in the number of junctional complexes of the EC surface layer, 2) a down-regulation of PDGF-B expression by cocultured EC, and 3) an increased resistance of EC to undergo apoptosis. Furthermore, EC cocultured with SMC become refractory to stimulation with VEGF (lack of CD34 expression on VEGF stimulation; inability to form capillary-like sprouts in a VEGF-dependent manner in a 3-dimensional in gel angiogenesis assay). In contrast, costimulation with VEGF and Ang-2 induced sprouting angiogenesis originating from coculture spheroids consistent with a model of Ang-2-mediated vessel destabilization resulting in VEGF responsiveness. Ang-2 on its own was able to stimulate endothelial cells in the absence of Ang-1 producing SMC, inducing lateral sheet migration as well as in gel sprouting angiogenesis. Taken together, the data establish the spheroidal EC/SMC system as a powerful cell culture model to study paracrine interactions in the vessel wall and provide functional evidence for smooth muscle cell-mediated quiescence effects on endothelial cells.  相似文献   

7.
:"治疗性血管新生" 是利用外源性血管生长因子或基因促进缺血部位新生血管形成,达到改善缺血部位血液供应而起到治 疗的目的,该方法为缺血性疾病的治疗提供了新的思路。目前研究的多种与血管生成相关的因子中,血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)是公认的最具特异性且作用最强的促进血管生长因子。但由于外源性血管生长因子重组蛋白在 体内半衰期短,试验中难以长时间持续给药起到刺激新血管生成及成熟的作用。研究表明通过超声破坏微泡技术可使基因转染 的靶细胞持续表达该基因。因此,应用超声靶向微泡破坏技术使VEGF 基因在缺血部位持续表达,可起到治疗性血管新生的作 用。本文将就超声微泡介导VEGF基因转染治疗缺血性疾病研究进展进行综述。  相似文献   

8.
Impairment of angiogenesis - new capillary blood vessel formation from pre-existing vessels, is frequent in aging tissues and cells. Reduced angiogenesis in aging individuals is associated with increased incidence of myocardial infarctions and other cardiovascular diseases. Therefore there is a need to develop novel strategies to enhance angiogenesis in aging individuals. Our previous study demonstrated aging-related impairment of angiogenesis in aging (vs. young) rat myocardial microvascular endothelial cells (MMEC), and identified reduced activation of the vascular endothelial growth factor (VEGF, the most potent stimulator of angiogenesis) gene as the main underlying mechanism. In the present study we examined the possibility of increasing angiogenesis and activating VEGF gene expression in aging MMECs using a chemical activator of the metabolic sensor - AMP activated protein kinase (AMPK). We hypothesized that activation of VEGF gene in aging MMECs by AMPK would stimulate angiogenesis and reverse the impairment in angiogenesis seen in these cells. We used MMECs isolated from aging (24 months old) Fisher F-344 rats and treated them with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), a specific pharmacological stimulator of AMPK. We examined: 1) in vitro angiogenesis; and 2) the expression of phosphorylated AMPK, VEGF, and P-MAPK/Erk1/2. Treatment of aging MMECs with AICAR increased in vitro angiogenesis and VEGF mRNA expression by 2.1-fold and 3.7-fold, respectively. Furthermore, AICAR treatment resulted in phosphorylation of MAPK/Erk1/2. This study demonstrated the successful use AICAR to reverse aging-related impairment of angiogenesis in aging MMECs by enhancing VEGF gene expression and also identified phosphorylation of MAPK/Erk1/2 as a likely mechanism of these changes.  相似文献   

9.
Angiogenesis, also known as new blood vessel formation, is regulated coordinately with other tissue differentiation events during limb development. Although vascular endothelial cell growth factor (VEGF) is important in the regulation of angiogenesis, chondrogenesis and osteogenesis during limb development, the role of other angiogenic factors is not well understood. Sphingosine 1-phosphate, a platelet-derived lipid mediator, regulates angiogenesis and vascular maturation via its action on the G-protein-coupled receptor S1P(1) (also known as EDG-1). In addition to vascular defects, abnormal limb development was also observed in S1p(1)(-/-) mice. Here we show that strong induction of S1P(1) expression is observed in the blood vessels and the interdigital mesenchymal cells during limb development. Deletion of S1P(1) results in aberrant chondrocyte condensation and defective digit morphogenesis. Interestingly, the vasculature in the S1p(1)(-/-) limbs was hyperplastic and morphologically altered. In addition, the hypoxia inducible factor (HIF)-1 alpha and its response gene VEGF were induced in S1p(1)(-/-) limbs. However, aberrant regulation of HIF-1 alpha and VEGF were not observed in embryonic fibroblasts derived from S1p(1)(-/-) mice, suggesting a non-cell autonomous effect of S1P(1) on VEGF expression. Indeed, similar limb defects were observed in endothelium-specific S1P(1) null mice in vivo. These data suggest that the function of S1P(1) in the developing vasculature is essential for proper limb development.  相似文献   

10.
The aim of the present study was to determine whether angiogenic cytokines, which induce neovascularization in the blood vascular system, might also be operative in the lymphatic system. In an assay of spontaneous in vitro angiogenesis, endothelial cells isolated from bovine lymphatic vessels retained their histotypic morphogenetic properties by forming capillary-like tubes. In a second assay, in which endothelial cells could be induced to invade a three-dimensional collagen gel within which they formed tube-like structures, lymphatic endothelial cells responded to basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) in a manner similar to what has previously been observed with endothelial cells derived from the blood vascular system. Finally, since angiogenesis is believed to require extracellular proteolytic activity, we investigated the effects of bFGF and VEGF on lymphatic endothelial cell proteolytic properties by focussing on the plasminogen activator (PA) system. bFGF and VEGF increased urokinase, urokinase receptor, and tissue-type PA expression. This was accompanied by an increase in PA inhibitor-l, which is thought to play an important permissive role in angiogenesis by protecting the extracellular matrix against excessive proteolytic degradation. Taken together, these results demonstrate that with respect to in vitro morphogenetic and proteolytic properties, lymphatic endothelial cells respond to the previously described angiogenic factors, bFGF and VEGF, in a manner very similar to what has been described for endothelial cells derived from the blood vascular system.  相似文献   

11.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis.  相似文献   

12.
Vasculogenesis, angiogenesis, and maturation are three major phases of the development of blood vessels. Although many receptors required for blood vessel formation have been defined, the intracellular signal transduction pathways involved in vascular maturation remain unclear. KLF2(-/-) embryos fail to develop beyond 13.5 days because of a lack of blood vessel stabilization. The molecular mechanism of KLF2 function in embryonic vascular vessels is still largely unknown. Here we show a normal development pattern of endothelial cells in KLF2(-/-) embryos but a defect of smooth muscle cells at the dorsal side of the aorta. This phenotype results from arrested vascular maturation characterized by the failure of mural cells to migrate around endothelial cells. This migration defect is also observed when platelet-derived growth factor-B (PDGF) controlled migration is studied in murine embryonic fibroblast (MEF) cells from KLF2(-/-) animals. In addition, KLF2(-/-) MEFs exhibit a significant growth defect, indicating that KLF2 is required to maintain the viability of MEF cells. The PDGF signal is mediated through the Src signaling pathway, and a downstream target of KLF2 is sphingosine 1-phosphate receptor 1. These studies demonstrate that KLF2 is required for smooth muscle cell migration and elucidate a novel mechanism involving communication between PDGF and KLF2 in vascular maturation.  相似文献   

13.
Abnormal angiogenesis is associated with a broad range of medical conditions, including cancer. The formation of neovasculature with functionally defective blood vessels significantly impacts tumor progression, metastasis, and the efficacy of anticancer therapies. Vascular endothelial growth factor (VEGF) potently induces vascular permeability and vessel growth in the tumor microenvironment, and its inhibition normalizes tumor vasculature. In contrast, the signaling of the small GTPase R-Ras inhibits excessive angiogenic growth and promotes the maturation of regenerating blood vessels. R-Ras signaling counteracts VEGF-induced vessel sprouting, permeability, and invasive activities of endothelial cells. In this study, we investigated the effect of R-Ras on VEGF receptor 2 (VEGFR2) activation by VEGF, the key mechanism for angiogenic stimulation. We show that tyrosine phosphorylation of VEGFR2 is significantly elevated in the tumor vasculature and dermal microvessels of VEGF-injected skin in R-Ras knockout mice. In cultured endothelial cells, R-Ras suppressed the internalization of VEGFR2, which is required for full activation of the receptor by VEGF. Consequently, R-Ras strongly suppressed autophosphorylation of the receptor at all five major tyrosine phosphorylation sites. Conversely, silencing of R-Ras resulted in increased VEGFR2 phosphorylation. This effect of R-Ras on VEGFR2 was, at least in part, dependent on vascular endothelial cadherin. These findings identify a novel function of R-Ras to control the response of endothelial cells to VEGF and suggest an underlying mechanism by which R-Ras regulates angiogenesis.  相似文献   

14.
The adult vasculature results from a network of vessels that is originally derived in the embryo by vasculogenesis, a process whereby vessels are formed de novo from endothelial cell (EC) precursors, known as angioblasts. During vasculogenesis, angioblasts proliferate and come together to form an initial network of vessels, also known as the primary capillary plexus. Sprouting and branching of new vessels from the preexisting vessels in the process of angiogenesis remodel the capillary plexus. Normal angiogenesis, a well-balanced process, is important in the embryo to promote primary vascular tree as well as an adequate vasculature from developing organs. On the other hand, pathological angiogenesis which frequently occurrs in tumors, rheumatoid arthritis, diabetic retinopathy and other circumstances can induce their own blood supply from the preexisting vasculature in a route that is close to normal angiogenesis. Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is perhaps the most important of pro-angiogenic cytokine because of its ability to regulate most of the steps in the angiogenic cascade. The main goal of this review article is to discuss the complex nature of the mode of action of VPF/VEGF on vascular endothelium. To this end, we conclude that more research needs to be done for completely understanding the VPF/VEGF biology with relation to angiogenesis. (Mol Cell Biochem 264: 51–61, 2004)  相似文献   

15.
Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, whose best‐understood mechanism is sprouting. However, therapeutic VEGF delivery to ischemic muscle induces angiogenesis by the alternative process of intussusception, or vascular splitting, whose molecular regulation is essentially unknown. Here, we identify ephrinB2/EphB4 signaling as a key regulator of intussusceptive angiogenesis and its outcome under therapeutically relevant conditions. EphB4 signaling fine‐tunes the degree of endothelial proliferation induced by specific VEGF doses during the initial stage of circumferential enlargement of vessels, thereby limiting their size and subsequently enabling successful splitting into normal capillary networks. Mechanistically, EphB4 neither inhibits VEGF‐R2 activation by VEGF nor its internalization, but it modulates VEGF‐R2 downstream signaling through phospho‐ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is required for EphB4 regulation of VEGF‐induced intussusceptive angiogenesis. Lastly, after clinically relevant VEGF gene delivery with adenoviral vectors, pharmacological stimulation of EphB4 normalizes dysfunctional vascular growth in both normoxic and ischemic muscle. These results identify EphB4 as a druggable target to modulate the outcome of VEGF gene delivery and support further investigation of its therapeutic potential.  相似文献   

16.
Development of the retinal vasculature is controlled by a hierarchy of interactions among retinal neurons, astrocytes and blood vessels. Retinal neurons release platelet-derived growth factor (PDGFA) to stimulate proliferation of astrocytes, which in turn stimulate blood vessel growth by secreting vascular endothelial cell growth factor (VEGF). Presumably, there must be counteractive mechanisms for limiting astrocyte proliferation and VEGF production to prevent runaway angiogenesis. Here, we present evidence that the developing vessels provide feedback signals that trigger astrocyte differentiation--marked by cessation of cell division, upregulation of glial fibrillary acidic protein (GFAP) and downregulation of VEGF. We prevented retinal vessel development by raising newborn mice in a high-oxygen atmosphere, which leads, paradoxically, to retinal hypoxia (confirmed by using the oxygen-sensing reagent EF5). The forced absence of vessels caused prolonged astrocyte proliferation and inhibited astrocyte differentiation in vivo. We could reproduce these effects by culturing retinal astrocytes in a low oxygen atmosphere, raising the possibility that blood-borne oxygen itself might induce astrocyte differentiation and indirectly prevent further elaboration of the vascular network.  相似文献   

17.
Interactions between astrocytes and endothelial cells (ECs) are crucial for retinal vascular formation. Astrocytes induce migration and proliferation of ECs via their production of vascular endothelial growth factor (VEGF) and, conversely, ECs induce maturation of astrocytes possibly by the secretion of leukemia inhibitory factor (LIF). Together with the maturation of astrocytes, this finalizes angiogenesis. Thus far, the mechanisms triggering LIF production in ECs are unclear. Here we show that apelin, a ligand for the endothelial receptor APJ, induces maturation of astrocytes mediated by the production of LIF from ECs. APJ (Aplnr)- and Apln-deficient mice show delayed angiogenesis; however, aberrant overgrowth of endothelial networks with immature astrocyte overgrowth was induced. When ECs were stimulated with apelin, LIF expression was upregulated and intraocular injection of LIF into APJ-deficient mice suppressed EC and astrocyte overgrowth. These data suggest an involvement of apelin/APJ in the maturation process of retinal angiogenesis.  相似文献   

18.
Increased expression of vascular endothelial growth factor (VEGF) in the retina starting after postnatal day (P)7 results in neovascularization originating from deep retinal capillaries, but not those in the superficial capillary bed. Doxycycline was administered starting P0 to double transgenic mice with inducible expression of VEGF in the retina. These mice showed proliferation and dilation of superficial retinal capillaries, indicating that at this stage of development, the superficial capillaries are sensitive to the effects of VEGF. Angiopoietin-2 (Ang2) is expressed along the surface of the retina for several days after birth, but by P7 and later, Ang2 is only expressed in the region of the deep capillary bed. In mice with ubiquitous doxycycline-inducible expression of Ang2, in the absence of doxycycline, intravitreous injection of a gutless adenoviral vector expressing VEGF (AGV.VEGF) resulted in neovascularization of the cornea and iris, but no retinal neovascularization. After treatment with doxycycline to induce Ang2 expression, intravitreous injection of AGV.VEGF caused retinal neovascularization in addition to corneal and iris neovascularization. The retinal neovascularization originated from both the superficial and deep capillary beds. These data suggest that Ang2 promotes sensitivity to the angiogenic effects of VEGF in retinal vessels.  相似文献   

19.
为探索小干扰RNA(small interfering RNA,siRNA)表达质粒在研究斑马鱼血管内皮生长因子(vascular endothelial growth factor,VEGF)基因调控网络中的应用,构建了4个以斑马鱼VEGF基因为靶点的siRNA表达载体pSI—VEGF、pS2-VEGF、pS3-VEGF及pS4-VEGF。通过显微注射的方法将载体导入1-2细胞期斑马鱼体内,于胚胎发育的48h采用RT-PCR的方法检测VEGF基因的表达量,研究不同干扰序列对VEGF基因表达的干涉作用。结果显示,成功地构建了siRNA表达载体。针对不同位点的寡核苷酸序列抑制VEGF基因表达的效率有显著差异,其中注射了ps1-VEGF的胚胎出现了心包膜水肿、血流速度减慢、循环红细胞堆积等症状,同时肠下静脉、节间血管以及其它血管出现不同程度的发育缺陷。实验结果说明,pS1-VEGF可引起斑马鱼胚胎血管发育缺陷。  相似文献   

20.
Endostatin is a cleavage product of collagen XVIII that strongly inhibits tumor angiogenesis. To determine if endostatin affects other angiogenic processes, we generated full-thickness excisional wounds on the back of mice that were systemically treated with recombinant murine endostatin. No macroscopic abnormalities of the wound healing process were observed. Histological analysis revealed normal wound contraction and re-epithelialization, but a slight reduction in granulation tissue formation and reduced matrix deposition at the wound edge. The blood vessel density in the wounds of endostatin-treated mice was not affected. However, ultrastructural analysis demonstrated severe abnormalities in blood vessel maturation. The wound vessels in the endostatin-treated mice were narrowed or closed with an irregular luminal surface, resulting in a severe reduction in the number of functional vessels and extravasation of erythrocytes. Endostatin treatment did not affect the expression level and localization of collagen XVIII mRNA and protein. Furthermore, the angiogenesis regulators vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 were normally expressed in the wounds of endostatin-treated mice. However, expression of the major wound matrix proteins fibronectin and collagens I and III was significantly reduced. This reduction is likely to explain the reduced density of the wound matrix. Our results demonstrate that endostatin treatment reduces the number of functional blood vessels and the matrix density in the granulation tissue, but does not significantly affect the overall wound healing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号