首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.  相似文献   

3.
Prelamin A processing impairment is a common feature of a restricted group of rare genetic alterations/disorders associated with a wide range of clinical phenotypes. Changes in histone posttranslational modifications, alterations in non-histone chromatin proteins and chromatin disorganization have been specifically linked to impairment of specific, distinct prelamin A processing steps, but the molecular mechanism involved in these processes is not yet understood . In this study, we show that the accumulation of wild-type prelamin A detected in restrictive dermopathy (RD), as well as the accumulation of mutated forms of prelamin A identified in familial partial lipodystrophy (FPLD) and mandibuloacral dysplasia (MADA), affect the nuclear localization of barrier-to-autointegration factor (BAF), a protein able to link lamin A precursor to chromatin remodeling functions. Our findings, in accordance with previously described results, support the hypothesis of a prelamin A involvement in BAF nuclear recruitment and suggest BAF-prelamin A complex as a protein platform usually activated in prelamin A-accumulating diseases. Finally, we demonstrate the involvement of the inner nuclear membrane protein emerin in the proper localization of BAF-prelamin A complex.  相似文献   

4.
5.
Lamin A, a protein component of the nuclear lamina, is synthesized as a precursor named prelamin A, whose multi-step maturation process involves different protein intermediates. As demonstrated in laminopathies such as familial partial lipodystrophy, mandibuloacral dysplasia, Werner syndrome, Hutchinson-Gilford progeria syndrome and restrictive dermopathy, failure of prelamin A processing results in the accumulation of lamin A protein precursors inside the nucleus which dominantly produces aberrant chromatin structure. To understand if nuclear lamina components may be involved in prelamin A chromatin remodeling effects, we investigated barrier-to-autointegration factor (BAF) localization and expression in prelamin A accumulating cells. BAF is a DNA-binding protein that interacts directly with histones, lamins and LEM-domain proteins and has roles in chromatin structure, mitosis and gene regulation.In this study, we show that the BAF heterogeneous localization between nucleus and cytoplasm observed in HEK293 cycling cells changes in response to prelamin A accumulation. In particular, we observed that the accumulation of lamin A, non-farnesylated prelamin A and farnesylated carboxymethylated lamin A precursors induce BAF nuclear translocation. Moreover, we show that the treatment of human fibroblasts with prelamin A interfering drugs results in similar changes. Finally, we report that the accumulation of progerin, a truncated form of farnesylated and carboxymethylated prelamin A identified in Hutchinson-Gilford progeria syndrome cells, induces BAF recruitment in the nucleus. These findings are supported by coimmunoprecipitation of prelamin A or progerin with BAF in vivo and suggest that BAF could mediate prelamin A-induced chromatin effects.  相似文献   

6.
7.
Lamin A is a nuclear envelope constituent involved in a group of human disorders, collectively referred to as laminopathies, which include Emery-Dreifuss muscular dystrophy. Because increasing evidence suggests a role of lamin A precursor in nuclear functions, we investigated the processing of prelamin A along muscle differentiation. Both protein levels and cellular localization of prelamin A appears to be modulated during C2C12 mouse myoblasts activation. Similar changes also occur in the expression of two lamin A-binding proteins: emerin and LAP2α. Furthermore prelamin A forms a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affects LAP2α and PCNA amount and increases caveolin 3 mRNA and protein levels, whilst accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor inhibits caveolin 3 expression. These data provide evidence for a critical role of lamin A precursor in the early steps of muscle cell differentiation. In fact the post-translational processing of prelamin A affects caveolin 3 expression and influences the myoblast differentiation process. Thus, altered lamin A processing could affect myoblast differentiation and/or muscle regeneration and might contribute to the myopathic phenotype.  相似文献   

8.
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2α were observed. Furthermore, prelamin A was found in a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2α and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.  相似文献   

9.
Increasing interest in drugs acting on prelamin A has derived from the finding of prelamin A involvement in severe laminopathies. Amelioration of the nuclear morphology by inhibitors of prelamin A farnesylation has been widely reported in progeroid laminopathies. We investigated the effects on chromatin organization of two drugs inhibiting prelamin A processing by an ultrastructural and biochemical approach. The farnesyltransferase inhibitor FTI-277 and the non-peptidomimetic drug N-acetyl-S-farnesyl-l-cysteine methylester (AFCMe) were administered to cultured control human fibroblasts for 6 or 18 h. FTI-277 interferes with protein farnesylation causing accumulation of non-farnesylated prelamin A, while AFCMe impairs the last cleavage of the lamin A precursor and is expected to accumulate farnesylated prelamin A. FTI-277 caused redistribution of heterochromatin domains at the nuclear interior, while AFCMe caused loss of heterochromatin domains, increase of nuclear size and nuclear lamina thickening. At the biochemical level, heterochromatin-associated proteins and LAP2 alpha were clustered at the nuclear interior following FTI-277 treatment, while they were unevenly distributed or absent in AFCMe-treated nuclei. The reported effects show that chromatin is an immediate target of FTI-277 and AFCMe and that dramatic remodeling of chromatin domains occurs following treatment with the drugs. These effects appear to depend, at least in part, on the accumulation of prelamin A forms, since impairment of prelamin A accumulation, here obtained by 5-azadeoxycytidine treatment, abolishes the chromatin effects. These results may be used to evaluate downstream effects of FTIs or other prelamin A inhibitors potentially useful for the therapy of laminopathies.  相似文献   

10.
Mandibuloacral dysplasia type A (MADA) is a rare laminopathy characterized by growth retardation, craniofacial anomalies, bone resorption at specific sites including clavicles, phalanges and mandibula, mottled cutaneous pigmentation, skin rigidity, partial lipodystrophy, and insulin resistance. The disorder is caused by recessive mutations of the LMNA gene encoding for A-type lamins. The molecular feature of MADA consists in the accumulation of the unprocessed lamin A precursor, which is detected at the nuclear rim and in intranuclear aggregates. Here, we report the characterization of prelamin A post-translational modifications in MADA cells that induce alterations in the chromatin arrangement and dislocation of nuclear envelope-associated proteins involved in correct nucleo-cytoskeleton relationships. We show that protein post-translational modifications change depending on the passage number, suggesting the onset of a feedback mechanism. Moreover, we show that treatment of MADA cells with the farnesyltransferase inhibitors is effective in the recovery of the chromatin phenotype, altered in MADA, provided that the cells are at low passage number, while at high passage number, the treatment results ineffective. Moreover, the distribution of the lamin A interaction partner SUN2, a constituent of the nuclear envelope, is altered by MADA mutations, as argued by the formation of a highly disorganized lattice. Treatment with statins partially rescues proper SUN2 organization, indicating that its alteration is caused by farnesylated prelamin A accumulation. Given the major role of SUN1 and SUN2 in the nucleo-cytoskeleton interactions and in regulation of nuclear positioning in differentiating cells, we hypothesise that mechanisms regulating nuclear membrane-centrosome interplay and nuclear movement may be affected in MADA fibroblasts.  相似文献   

11.
Osteoclast differentiation is a complex process involving cytoskeleton and nuclear reorganization. Osteoclasts regulate bone homeostasis and have a key role in bone degenerative processes. Osteolysis and osteoporosis characterize a subset of laminopathies, inherited disorders due to defects in lamin A/C. Laminopathies featuring bone resorption are characterized, at the molecular level, by anomalous accumulation of the unprocessed lamin A precursor, called prelamin A. To obtain a suitable cell model to study prelamin A effects on osteoclasts, prelamin A processing inhibitors FTI-277 or AFCMe were applied to peripheral blood monocytes induced to differentiate towards the osteoclastic lineage. Previous studies have shown that treatment with FTI-277 causes accumulation of non-farnesylated prelamin A, while AFCMe inhibition of prelamin A maturation causes accumulation of a farnesylated form. We demonstrate that monocytes subjected to FTI-277 treatment and mostly those subjected to AFCMe administration, differentiate towards the osteoclastic lineage more efficiently than untreated monocytes, in terms of number of multinucleated giant cells, mRNA expression of osteoclast-related genes and TRACP 5b activity. On the other hand, the bone resorption activity of osteoclasts obtained in the presence of high prelamin A levels is lower with respect to control osteoclasts. This finding may help the understanding of the osteolytic and osteoporotic processes that characterize progeroid laminopathies.  相似文献   

12.
Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.  相似文献   

13.
Isoprenylation is required for the processing of the lamin A precursor   总被引:18,自引:5,他引:13       下载免费PDF全文
The nuclear lamina proteins, prelamin A, lamin B, and a 70-kD lamina-associated protein, are posttranslationally modified by a metabolite derived from mevalonate. This modification can be inhibited by treatment with (3-R,S)-3-fluoromevalonate, demonstrating that it is isoprenoid in nature. We have examined the association between isoprenoid metabolism and processing of the lamin A precursor in human and hamster cells. Inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by mevinolin (lovastatin) specifically depletes endogenous isoprenoid pools and inhibits the conversion of prelamin A to lamin A. Prelamin A processing is also blocked by mevalonate starvation of Mev-1, a CHO cell line auxotrophic for mevalonate. Moreover, inhibition of prelamin A processing by mevinolin treatment is rapidly reversed by the addition of exogenous mevalonate. Processing of prelamin A is, therefore, dependent on isoprenoid metabolism. Analysis of the conversion of prelamin A to lamin A by two independent methods, immunoprecipitation and two-dimensional nonequilibrium pH gel electrophoresis, demonstrates that a precursor-product relationship exists between prelamin A and lamin A. Analysis of R,S-[5-3H(N)]mevalonate-labeled cells shows that the rate of turnover of the isoprenoid group from prelamin A is comparable to the rate of conversion of prelamin A to lamin A. These results suggest that during the proteolytic maturation of prelamin A, the isoprenylated moiety is lost. A significant difference between prelamin A processing, and that of p21ras and the B-type lamins that undergo isoprenylation-dependent proteolytic maturation, is that the mature form of lamin A is no longer isoprenylated.  相似文献   

14.
Proteins establish and maintain a distinct intracellular localization by means of targeting, retention, and retrieval signals, ensuring most proteins reside predominantly in one cellular location. The enzymes involved in the maturation of lamin A present a challenge to this paradigm. Lamin A is first synthesized as a 74-kDa precursor, prelamin A, with a C-terminal CaaX motif and undergoes a series of posttranslational modifications including CaaX processing (farnesylation, aaX cleavage and carboxylmethylation), followed by endoproteolytic cleavage by Zmpste24. Failure to cleave prelamin A results in progeria and related premature aging disorders. Evidence suggests prelamin A is imported directly into the nucleus where it is processed. Paradoxically, the processing enzymes have been shown to reside in the cytosol (farnesyltransferase), or are ER membrane proteins (Zmpste24, Rce1, and Icmt) with their active sites facing the cytosol. Here we have reexamined the cellular site of prelamin A processing, and show that the mammalian and yeast processing enzymes Zmpste24 and Icmt exhibit a dual localization to the inner nuclear membrane, as well as the ER membrane. Our findings reveal the nucleus to be a physiologically relevant location for CaaX processing, and provide insight into the biology of a protein at the center of devastating progeroid diseases.  相似文献   

15.
The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnormal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin areas, suggesting a major involvement of emerin in pre-lamin A-mediated mechanisms of chromatin remodeling.  相似文献   

16.
Lamin A contributes to the structure of nuclei in all mammalian cells and plays an important role in cell division and migration. Mature lamin A is derived from a farnesylated precursor protein, known as prelamin A, which undergoes post-translational cleavage catalyzed by the zinc metalloprotease STE24 (ZPMSTE24). Accumulation of farnesylated prelamin A in the nuclear envelope compromises cell division, impairs mitosis and induces an increased expression of inflammatory gene products. ZMPSTE24 has been proposed as a potential therapeutic target in oncology. A library of peptidomimetic compounds were synthesized and screened for their ability to induce accumulation of prelamin A in cancer cells and block cell migration in pancreatic ductal adenocarcinoma cells. The results of this study suggest that inhibitors of lamin A maturation may interfere with cell migration, the biological process required for cancer metastasis.  相似文献   

17.
One puzzling observation in patients affected with Hutchinson-Gilford progeria syndrome (HGPS), who overall exhibit systemic and dramatic premature aging, is the absence of any conspicuous cognitive impairment. Recent studies based on induced pluripotent stem cells derived from HGPS patient cells have revealed a lack of expression in neural derivatives of lamin A, a major isoform of LMNA that is initially produced as a precursor called prelamin A. In HGPS, defective maturation of a mutated prelamin A induces the accumulation of toxic progerin in patient cells. Here, we show that a microRNA, miR-9, negatively controls lamin A and progerin expression in neural cells. This may bear major functional correlates, as alleviation of nuclear blebbing is observed in nonneural cells after miR-9 overexpression. Our results support the hypothesis, recently proposed from analyses in mice, that protection of neural cells from progerin accumulation in HGPS is due to the physiologically restricted expression of miR-9 to that cell lineage.  相似文献   

18.
The nuclear lamina protein, lamin A is produced by proteolytic cleavage of a 74 kDa precursor protein, prelamin A. The conversion of this precursor to mature lamin A is mediated by a specific endoprotease, prelamin A endoprotease. Subnuclear fractionation indicates that the prelamin A endoprotease is localized at the nuclear membrane. The enzyme appears to be an integral membrane protein, as it can only be removed from the nuclear envelope with detergent. It is effectively solubilized by the detergent n-octyl-beta-D-glucopyranoside and can be partially-purified (approximately 1200-fold) by size exclusion and cation exchange (Mono S) chromatography. Prelamin A endoprotease from HeLa cells was eluted from Mono S with 0.3 M sodium chloride as a single peak of activity. SDS-PAGE analysis of this prelamin A endoprotease preparation shows that it contains one major polypeptide at 65 kDa and smaller amounts of a second 68 kDa polypeptide. Inhibition of the enzyme activity in this preparation by specific serine protease inhibitors is consistent with the enzyme being a serine protease.  相似文献   

19.
Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2alpha distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies.  相似文献   

20.
Prelamin A undergoes multistep processing to yield lamin A, a structural protein of the nuclear lamina. Prelamin A terminates with a CAAX motif, which triggers farnesylation of a C-terminal cysteine (the C of the CAAX motif), endoproteolytic release of the last three amino acids (the AAX), and methylation of the newly exposed farnesylcysteine residue. In addition, prelamin A is cleaved a second time, releasing 15 more residues from the C terminus (including the farnesylcysteine methyl ester), generating mature lamin A. This second cleavage step is carried out by an endoplasmic reticulum membrane protease, ZMPSTE24. Interest in the posttranslational processing of prelamin A has increased with the recognition that certain progeroid syndromes can be caused by mutations that lead to an accumulation of farnesyl-prelamin A. Recently, we showed that a key cellular phenotype of these progeroid disorders, misshapen cell nuclei, can be ameliorated by inhibitors of protein farnesylation, suggesting a potential strategy for treating these diseases. In this article, we review the posttranslational processing of prelamin A, describe several mouse models for progeroid syndromes, explain the mutations underlying several human progeroid syndromes, and summarize recent data showing that misshapen nuclei can be ameliorated by treating cells with protein farnesyltransferase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号