首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
To evaluate the role of sphingosine kinase 1 (SphK1) in insulin secretion, we used stable transfection to knock down the expression of the Sphk1 gene in the rat insulinoma INS-1 832/13 cell line. Cell lines with lowered Sphk1 mRNA expression and SphK1 enzyme activity (SK11 and SK14) exhibited lowered glucose- and 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) plus glutamine-stimulated insulin release and low insulin content associated with decreases in the mRNA of the insulin 1 gene. Overexpression of the rat or human Sphk1 cDNA restored insulin secretion and total insulin content in the SK11 cell line, but not in the SK14 cell line. The Sphk1 cDNA-transfected SK14 cell line expressed significantly less SphK1 activity than the Sphk1 cDNA-transfected SK11 cells suggesting that the shRNA targeting SK14 was more effective in silencing the exogenous rat Sphk1 mRNA. The results indicate that SphK1 activity is important for insulin synthesis and secretion.  相似文献   

2.
The interconversion of estradiol-17β and estrone in the rat uterus is due to the action of 17β-hydroxysteroid dehydrogenase. Whole uteri or 800 × g supernatant fractions of the uteri were incubated in the presence of [3H] estradiol-17β and NAD at 37°C for 3 h or 1 h, respectively. In the mature rat uterus the oxidation of estradiol-17β and estrone was dependent on the stage of the estrous cycle, suggesting hormonal control. The 17β-hydroxysteroid dehydrogenase activity was highest at estrus (200 fmol estrone) and lowest at diestrus (80 fmol estrone). An enhancement of activity occurred when adult rats at each stage of the estrous cycle were administered estradiol-17β, while progesterone administration at each stage resulted in decreased enzyme activity. The uterine 17β-hydroxysteroid dehydrogenase activity of estradiol-17β treated ovariectomized rats was time and dose dependent but decreased when progesterone was administered with or without estradiol-17β administration. These results suggest that estradiol-17β caused an increase in enzyme activity that was inhibitable by progesterone in the rat uterus. The increased 17β -hydroxysteroid dehydrogenase activity may reflect a specific response of the rat uterus to estradiol-17β.  相似文献   

3.
4.
Perfluoroalkylated substances (PFASs) including perfluorooctane acid (PFOA) and perfluorooctane sulfonate (PFOS) have been classified as persistent organic pollutants and are known to cause reduced testosterone production in human males. The objective of the present study was to compare the potencies of five different PFASs including PFOA, PFOS, potassium perfluorooctane sulfonate (PFOSK), potassium perfluorohexane sulfonate (PFHxSK) and potassium perfluorobutane sulfonate (PFBSK) in the inhibition of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) activities in the human and rat testes. Human and rat microsomal enzymes were exposed to various PFASs. PFOS and PFOSK inhibited rat 3β-HSD activity with IC50 of 1.35 ± 0.05 and 1.77 ± 0.04 μM, respectively, whereas PFHxSK and PFBSK had no effect at concentrations up to 250 μM. All chemicals tested weakly inhibited human 3β-HSD activity with IC50s over 250 μM. On the other hand, PFOS, PFOSK and PFOA inhibited human 17β-HSD3 activity with IC50s of 6.02 ± 1.02, 4.39 ± 0.46 and 127.60 ± 28.52 μM, respectively. The potencies for inhibition of 17β-HSD3 activity were determined to be PFOSK > PFOS > PFOA > PFHxSK = PFBSK for human 17β-HSD3 activity. There appears to be a species-dependent sensitivity to PFAS-mediated inhibition of enzyme activity because the IC50s of PFOS(K) for inhibition of rat 17β-HSD3 activity was greater than 250 μM. In conclusion, the present study shows that PFOS and PFOSK are potent inhibitors of rat 3β-HSD and human 17β-HSD3 activity, and implies that inhibition of steroidogenic enzyme activity may be a contributing factor to the effects that PFASs exert on androgen secretion in the testis.  相似文献   

5.
The enzyme type 5 17β-hydroxysteroid dehydrogenase 5 (17β-HSD5) catalyzes the transformation of androstenedione (4-dione) to testosterone (T) in the prostate. This metabolic pathway remains active in cancer patients receiving androgen deprivation therapy. Since physicians seek to develop advantageous and better new treatments to increase the average survival of these patients, we synthesized several different dehydroepiandrosterone derivatives. These compounds have a pyrazole or imidazole function at C-17 and an ester moiety at C-3 and were studied as inhibitors of 17β-HSD5. The kinetic parameters of this enzyme were determined for use in inhibition assays. Their pharmacological effect was also determined on gonadectomized hamsters treated with Δ4-androstenedione (4-dione) or testosterone (T) and/or the novel compounds. The results indicated that the incorporation of a heterocycle at C-17 induced strong 17β-HSD5 inhibition. These derivatives decreased flank organ diameter and prostate weight in castrated hamsters treated with T or 4-dione. Inhibition of 17β-HSD5 by these compounds could have therapeutic potential for the treatment of prostate cancer and benign prostatic hyperplasia.  相似文献   

6.
The 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3) are involved in the reactions that culminate in androgen biosynthesis in Leydig cells. Human and rat testis microsomes were used to investigate the inhibitory potencies on 3β-HSD and 17β-HSD3 activities of 14 different phthalates with various carbon numbers in the ethanol moiety. The results demonstrated that the half-maximal inhibitory concentrations (IC(50)s) of dipropyl (DPrP), dibutyl (DBP), dipentyl (DPP), bis(2-butoxyethyl) (BBOP) and dicyclohexyl (DCHP) phthalate were 123.0, 24.1, 25.5, 50.3 and 25.5μM for human 3β-HSD activity, and 62.7, 30.3, 33.8, 82.6 and 24.7μM for rat 3β-HSD activity, respectively. However, only BBOP and DCHP potently inhibited human (IC(50)s, 23.3 and 8.2μM) and rat (IC(50)s, 30.24 and 9.1μM) 17β-HSD3 activity. Phthalates with 1-2 or 7-8 carbon atoms in ethanol moieties had no effects on both enzyme activities even at concentrations up to 1mM. The mode of action of DCHP on 3β-HSD activity was competitive with the substrate pregnenolone but noncompetitive with the cofactor NAD+. The mode of action of DCHP on 17β-HSD3 activity was competitive with the substrate androstenedione but noncompetitive with the cofactor NADPH. In summary, our results showed that there are clear structure-activity responses for phthalates in the inhibition of both 3β-HSD and 17β-HSD3 activities. The length of carbon chains in the ethanol moieties of phthalates may determine the potency to inhibit these two enzymes.  相似文献   

7.
Summary In order to localize 3-hydroxysteroid dehydrogenase activity on the ultrastructural level, sections of Newt and Rat adrenocortical tissues, fixed in a mixture of glutaraldehyde (0.25%) and formaldehyde (1%), were incubated in a medium containing namely a 3-hydroxysteroid as substrate, NAD, potassium ferricyanide as final electron acceptor, and copper sulfate. In some experiments, phenazine methosulfate (PMS), an electron carrier which can substitute for the activity of the endogenous NADH-diaphorase, is added at various concentrations to the incubation medium.A final precipitate of copper ferrocyanide is observed in the immediate vicinity of the tubules of the smooth endoplasmic reticulum, or in contact with their external faces. The reaction product can also be seen in mitochondrial cristae. The reaction does not take place in incubation media lacking substrate or containing cyanoketone, a specific inhibitor of 3-hydroxysteroid dehydrogenase. The addition of PMS to the incubation medium increases the intensity of the reaction, but does not modify the localization of the precipitate.  相似文献   

8.
Modulation of intracellular glucocorticoid availability is considered as a promising strategy to treat glucocorticoid-dependent diseases. 18β-Glycyrrhetinic acid (GA), the biologically active triterpenoid metabolite of glycyrrhizin, which is contained in the roots and rhizomes of licorice (Glycyrrhiza spp.), represents a well-known but non-selective inhibitor of 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, to assess the physiological functions of the respective enzymes and for potential therapeutic applications selective inhibitors are needed. In the present study, we applied bioassays and 3D-structure modeling to characterize nine 11β-HSD1 and fifteen 11β-HSD2 inhibiting GA derivatives. Comparison of the GA derivatives in assays using cell lysates revealed that modifications at the 3-hydroxyl and/or the carboxyl led to highly selective and potent 11β-HSD2 inhibitors. The data generated significantly extends our knowledge on structure-activity relationship of GA derivatives as 11β-HSD inhibitors. Using recombinant enzymes we found also potent inhibition of mouse 11β-HSD2, despite significant species-specific differences. The selected GA derivatives potently inhibited 11β-HSD2 in intact SW-620 colon cancer cells, although the rank order of inhibitory potential differed from that obtained in cell lysates. The biological activity of compounds was further demonstrated in glucocorticoid receptor (GR) transactivation assays in cells coexpressing GR and 11β-HSD1 or 11β-HSD2. 3D-structure modeling provides an explanation for the differences in the selectivity and activity of the GA derivatives investigated. The most potent and selective 11β-HSD2 inhibitors should prove useful as mechanistic tools for further anti-inflammatory and anti-cancer in vitro and in vivo studies. Article from the Special issue on Targeted Inhibitors.  相似文献   

9.
Summary The ovaries of sexually mature, pregnant mare serum gonadotropin (PMSG) stimulated, 12 week old Mongolian gerbils were investigated morphologically and enzyme histochemically for the appearance of the 3-hydroxysteroid and the 3-hydroxysteroid dehydrogenase during the estrous cycle. Up to ovulation, on day 3 of the estrous cycle, the number of vesicular follicles increases continuously. Primarily atretic follicles can be seen on day 4. On day 5 corpora lutea appear, but they degenerate already by day 6.During the entire estrous cycle, 3-hydroxysteroid dehydrogenase and 3-hydroxysteroid dehydrogenase activity can be found in the theca of tertiary follicles and in the interstitial cells, whereas the theca of secondary follicles and the granulosa of healthy follicles do not exhibit any enzyme activity. The activity decreases from day 1 till day 6. The granulosa of atretic follicles and the cells of corpora lutea show only weak activity. It may be significant that the intensity of enzyme activity in the ovary and the estrogen level in the plasma are differently correlated to the estrous cycle.This investigation was supported by the Deutsche Forschungsgemeinschaft  相似文献   

10.
5α-Dihydrotestosterone, 17-hydroxyprogesterone caproate, 2-methoxyestrone and a number of nonsteroidal antiestrogens (clomiphene citrate, nafoxidine hydrochloride, tamoxifen, MER-25) were tested for their ability to block estradiol-mediated repression of the androgen-dependent 3β-hydroxy-steroid dehydrogenase activity of male rat liver. With the exception of 5α-dihydrotestosterone, which induced activity in females, none of these substances affected 3β-hydroxy-steroid dehydrogenase activity when administered alone to otherwise untreated male and female rats. Tamoxifen (100 or 500 μg/day) was the only substance which prevented a decrease in enzyme activity when given simultaneously with estradiol (5 μg/day). The estradiol-mediated decrease in activity was not antagonized by a 100-fold higher dose of androgen (5α-dihydrotestosterone, 0.5 mg/day), demonstrating the potent antiandrogenic effect of estradiol on this hepatic androgen-dependent enzyme activity.  相似文献   

11.
These studies were done to determine if the progesterone-induced estrogen receptor-regulatory factor (ReRF) in hamster uterus is 17β-hydroxysteroid dehydrogenase (17β-HSD), i.e. that rapid loss of nuclear estrogen receptor (Re) might be due to enhanced estradiol oxidation to estrone catalyzed by 17β-HSD. Treatment of proestrous hamsters with progesterone (~25 mg/kg BW) for either 2 h or 4 h had no effect on 17β-HSD activity measured as the rate of conversion of [6,7-3H]estradiol to [3H]estrone by whole uterine homogenstes at 35°C. During this same time interval, progesterone treatment increased the rate of inactivation of the occupied form of nuclear Re as determined during a 30 m1n incubation of uterine nuclear extract in vitro at 36°C. Since we previously demonstrated that such in vitro Re-inactivating activity represents ReRF, the present studies show that ReRF is not 17β-HSD or a modifier of that enzyme.  相似文献   

12.
17β-Hydroxysteroid dehydrogenase (17β-SDH) activity was studied in culture ovine rayometrial cells. After primary culture, cells were routinely subcultured (every 7th day), seeded at 5–105 cells per dish and grown in a medium with 2% of serum. 17β-SDH activity was measured by incubating intact cell monolayers with [3H]-estradiol (5·10−6) in serum-free medium. Metabolites were extracted from both cells and medium, and separated by thin-layer chromatography. 17β-SDH was expressed as total E i formed (cells + medium) in fmol/mg of protein as a function of time. 17β-SDH has an approximate Km of 5–10−6 M. After 3 min of incubation, all measurable E1 is within the cells; it is progressively released but after l h only 40% of E1 is found in the medium. 17β-SDH decreases from day 2 to day 8 of each subculture, whereas total proteins increase. Subculture partially restores 17β-SDH activity so that it is always higher on day 2 of any subculture than on day 8 of the previous one. however a progressive decline occurs with successive subcultures. This decline parallels the slowing of cell growth and overall protein synthesis and probably reflects cell ageing.  相似文献   

13.
The Fo membrane domain of FoF1-ATPase complex had been purified from porcine heart mitochondria. SDS-PAGE with silver staining indicated that the purity of Fo was about 85% and the sample contained no subunits of F1-ATPase. The purified Fo was reconstituted into liposomes with different phospholipid composition, and the effect of CL (cardiolipin), PA (phosphatidic acid), PI (phosphatidylinositol) and PS (phosphatidylserine) on the H+ translocation activity of Fo was investigated. The results demonstrated that CL, PA and PI could promote the proton translocation of Fo with the order of CL>PA>>PI, while PS inhibited it. Meanwhile ADM (adriamycin) severely impaired the proton translocation activity of Fo vesicles containing CL, which suggested that CL's stimulation of the activity of reconstituted Fo might correlate with its non-bilayer propensity. After Fo was incorporated into the liposomes containing PE (phosphatidylethanolamine), DOPE (dioleoylphosphatidylethanolamine) as well as DEPE (dielaidoylphospha  相似文献   

14.
Non-steroidal compounds that inhibit 17β-hydroxysteroid dehydrogenase isoform 3 (17β-HSD3), an enzyme catalyzing the final step in testosterone biosynthesis in Leydig cells, are under development for male contraceptive or treatment of androgen dependent diseases including prostate cancer. A series of curcumin analogues with more stable chemical structures were compared to curcumin as inhibitors of 17β-HSD3 in rat intact Leydig cells as well as rat and human testis microsomes.  相似文献   

15.
The cholesterol metabolism pathway in Mycobacterium tuberculosis (M. tb) is a potential source of energy as well as secondary metabolite production that is important for survival of M. tb in the host macrophage. Oxidation and isomerization of 3β-hydroxysterols to 4-en-3-ones is requisite for sterol metabolism and the reaction is catalyzed by 3β-hydroxysteroid dehydrogenase (Rv1106c). Three series of 6-azasteroids and 4-azasteroids were employed to define the substrate preferences of M. tb 3β-hydroxysteroid dehydrogenase. 6-Azasteroids with large, hydrophobic side chains at the C17 position are the most effective inhibitors. Substitutions at C1, C2, C4 and N6 were poorly tolerated. Our structure-activity studies indicate that the 6-aza version of cholesterol is the best and tightest binding competitive inhibitor (Ki = 100 nM) of the steroid substrate and are consistent with cholesterol being the preferred substrate of M. tb 3β-hydroxysteroid dehydrogenase.  相似文献   

16.
Spiromorpholinone derivatives were synthesized from androsterone or cyclohexanone in 6 or 3 steps, respectively, and these scaffolds were used for the introduction of a hydrophobic group via a nucleophilic substitution. Non-steroidal spiromorpholinones are not active as inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3), but steroidal morpholinones are very potent inhibitors. In fact, those with (S) stereochemistry are more active than their (R) homologues, whereas N-benzylated compounds are more active than their non substituted precursors. The target compounds exhibited strong inhibition of 17β-HSD3 in rat testis homogenate (87–92% inhibition at 1 μM).  相似文献   

17.
17Beta-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a steroidogenic enzyme that catalyzes the transformation of 4-androstene-3,17-dione (Δ?-dione) into androgen testosterone (T). To provide effective inhibitors of androgen biosynthesis, we synthesized two different series (amines and carbamates) of 3β-substituted-androsterone derivatives and we tested their inhibitory activity on 17β-HSD3. From the results of our structure-activity relationship study, we identified a series of compounds producing a strong inhibition of 17β-HSD3 overexpressed in HEK-293 cells (homogenized cells). The most active compound when tested in intact HEK-293 transfected cells, namely (3α,5α)-3-{[trans-2,5-dimethyl-4-{[2-(trifluoromethyl)phenyl] sulfonyl}piperazin-1-yl]methyl}-3-hydroxyandrostan-17-one (15b), shows an IC?? value of 6 nM, this compound is thus eight times more active than our reference compound D-5-2 (IC??=51 nM). This new improved inhibitor did not stimulate the proliferation of androgen-sensitive Shionogi cells, suggesting a non-androgenic profile. Compound 15b is thus a good candidate for further in vivo studies on rodents.  相似文献   

18.
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) is primarily responsible for intracellular biosynthesis of active glucocorticoid, and its tissue-specific dysregulation has been implicated in the development of metabolic syndromes. We have developed a cell-based assay for measuring 11β-HSD1 activities using murine skeletal muscle cell line C2C12. We found that the messenger RNA (mRNA) expression of 11β-HSD1 increased on differentiation with enhanced enzyme activity as determined by homogeneous time-resolved fluorescence (HTRF) assay. Carbenoxolone, a well-known 11β-HSD1 inhibitor, exhibited an IC50 value similar to that in in vitro microsomal assay (IC50 = 0.3 μM). Unlike in vitro microsomal assay, cosubstrate NADPH was not required in the cell-based assay, indicating that viable cells might provide a sufficient amount of endogenous NADPH to catalyze the enzymatic conversion of inactive cortisone to active cortisol. Treatment of C2C12 myotubes with cortisone concentration dependently transactivated and transrepressed glutamine synthase and interleukin-6, respectively, which were abrogated by carbenoxolone or RU-486 (mifepristone), a glucocorticoid receptor antagonist. Accordingly, a newly designed cell-based assay using differentiated skeletal muscle cells would be useful for high-throughput screening of 11β-HSD1 inhibitors as well as for understanding the molecular mechanisms of glucocorticoid action.  相似文献   

19.
20.
The effect of estradiol, hydrocortisone and progesterone on 3,20-and 3,17-hydroxysteroid dehydrogenase (HSD) in mutants of Streptomyces hydrogenans was compared to the steroid response of the wild type. Mutants were defective in arginine biosynthesis and/or aerial mycelial formation and lacked both enzymes or only 17-HSD. Some 17-HSD mutants had lost the ability to be induced by estradiol, by progesterone or by both. Some 20-HSD mutants had lost the ability to be induced by hydrocortisone, by progesterone or by both. Non-inducibility of 17-and 20-HSD by progesterone was not co-ordinate. An additional study of the growth phase-dependent enzyme activity of the wild type after induction with estradiol, hydrocortisone and progesterone was performed.Non-standard abbreviations 17-HSD 3,17-Hydroxysteroid dehydrogenase (EC 1.1.1.51) - 20-HSD 3,20-hydroxysteroid dehydrogenase (EC 1.1.1.53) - AO acridine orange - EBr ethidium bromide - EMS ethyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号