首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary growth in skeletal muscle occurs via the dissimilar processes of abluminal sprouting or longitudinal splitting, which can be initiated by muscle stretch and elevated shear stress, respectively. The distinct morphological hallmarks of these types of capillary growth suggest that discrete sets of angiogenic mediators play a role in each situation. Because proteolysis and proliferation are two key steps associated with capillary growth, we tested whether differences in the regulation of matrix metalloproteinases (MMPs) or VEGF may be associated with the two types of capillary growth. We found significant increases in MMP-2 total protein and percent activation, and membrane type-1 MMP mRNA levels, compared with controls after muscle stretch but not after shear stress stimulation. In contrast, VEGF protein and endothelial cell proliferation increased after either angiogenic stimulus. We observed that MMP-2 regulation occurs independent of VEGF signaling, because VEGF did not induce MMP-2 production or activation in isolated endothelial cells. Our data suggest that the involvement of MMPs in capillary growth is dependent on the nature of the angiogenic stimulus.  相似文献   

2.
High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1alpha. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1alpha did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control (P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.  相似文献   

3.
CD248 (Endosialin) is a type 1 membrane protein involved in developmental and pathological angiogenesis through its expression on pericytes and regulation of PDGFRβ signalling. Here we explore the function of CD248 in skeletal muscle angiogenesis. Two distinct forms of capillary growth (splitting and sprouting) can be induced separately by increasing microcirculatory shear stress (chronic vasodilator treatment) or by inducing functional overload (extirpation of a synergistic muscle). We show that CD248 is present on pericytes in muscle and that CD248-/- mice have a specific defect in capillary sprouting. In contrast, splitting angiogenesis is independent of CD248 expression. Endothelial cells respond to pro-sprouting angiogenic stimulus by up-regulating gene expression for HIF1α, angiopoietin 2 and its receptor TEK, PDGF-B and its receptor PDGFRβ; this response did not occur following a pro-splitting angiogenic stimulus. In wildtype mice, defective sprouting angiogenesis could be mimicked by blocking PDGFRβ signalling using the tyrosine kinase inhibitor Imatinib mesylate. We conclude that CD248 is required for PDGFRβ-dependant capillary sprouting but not splitting angiogenesis, and identify a new role for CD248 expressed on pericytes in the early stages of physiological angiogenesis during muscle remodelling.  相似文献   

4.
Moderate ethanol consumption demonstrates a protective effect against cardiovascular disease and improves insulin sensitivity, possibly through angiogenesis. We investigated whether 1) ethanol would increase skeletal muscle growth factor gene expression and 2) the effects of ethanol on skeletal muscle growth factor gene expression were independent of exercise-induced growth factor gene expression. Female Wistar rats were used. Four groups (saline + rest; saline + exercise; 17 mmol/kg ethanol + rest; and 17 mmol/kg ethanol + exercise) were used to measure the growth factor response to acute exercise and ethanol administration. Vascular endothelial growth factor (VEGF), transforming growth factor-beta(1) (TGF-beta(1)), basic fibroblast growth factor (bFGF), Flt-1, and Flk-1 mRNA were analyzed from the left gastrocnemius by quantitative Northern blot. Ethanol increased VEGF, TGF-beta(1), bFGF, and Flt-1 mRNA at rest and after acute exercise. Ethanol increased resting Flk-1 mRNA. Ethanol increased bFGF mRNA independently of exercise. These findings suggest that 1) ethanol can increase skeletal muscle angiogenic growth factor gene expression and 2) the mechanisms responsible for the ethanol-induced increases in VEGF, TGF-beta(1), and Flt-1 mRNA appear to be different from those responsible for exercise-induced regulation. Therefore, these results provide evidence in adult rat tissue that the protective cardiovascular effects of moderate ethanol consumption may result in part through the increase of angiogenic growth factors.  相似文献   

5.
Matrix metalloproteinases and angiogenesis   总被引:13,自引:0,他引:13  
Matrix metalloproteinases (MMPs) are a family of enzymes that proteolytically degrade various components of the extracellular matrix (ECM). Angiogenesis is the process of forming new blood vessels from existing ones and requires degradation of the vascular basement membrane and remodeling of the ECM in order to allow endothelial cells to migrate and invade into the surrounding tissue. MMPs participate in this remodeling of basement membranes and ECM. However, it has become clear that MMPs contribute more to angiogenesis than just degrading ECM components. Specific MMPs have been shown to enhance angiogenesis by helping to detach pericytes from vessels undergoing angiogenesis, by releasing ECM-bound angiogenic growth factors, by exposing cryptic proangiogenic integrin binding sites in the ECM, by generating promigratory ECM component fragments, and by cleaving endothelial cell-cell adhesions. MMPs can also contribute negatively to angiogenesis through the generation of endogenous angiogenesis inhibitors by proteolytic cleavage of certain collagen chains and plasminogen and by modulating cell receptor signaling by cleaving off their ligand-binding domains. A number of inhibitors of MMPs that show antiangiogenic activity are already in early stages of clinical trials, primarily to treat cancer and cancer-associated angiogenesis. However, because of the multiple effects of MMPs on angiogenesis, careful testing of these MMP inhibitors is necessary to show that these compounds do not actually enhance angiogenesis.  相似文献   

6.
Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-beta(1) (TGF-beta(1)) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O(2) fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-beta(1), and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA (P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P < 0.05), absent TGF-beta(1) and flt-1 mRNA responses to exercise, and an approximately threefold (P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.  相似文献   

7.
Skeletal muscle exhibits superb plasticity in response to changes in functional demands. Chronic increases of skeletal muscle contractile activity, such as endurance exercise, lead to a variety of physiological and biochemical adaptations in skeletal muscle, including mitochondrial biogenesis, angiogenesis, and fiber type transformation. These adaptive changes are the basis for the improvement of physical performance and other health benefits. This review focuses on recent findings in genetically engineered animal models designed to elucidate the mechanisms and functions of various signal transduction pathways and gene expression programs in exercise-induced skeletal muscle adaptations.  相似文献   

8.
Exercise training improves aging-induced deterioration of angiogenesis in the heart. However, the mechanisms underlying exercise-induced improvement of capillary density in the aged heart are unclear. Vascular endothelial growth factor (VEGF) is implicated in angiogenesis, which activated angiogenic signaling cascade through Akt and endothelial nitric oxide synthase (eNOS)-related pathway. We hypothesized that VEGF angiogenic signaling cascade in the heart contributes to a molecular mechanism of exercise training-induced improvement of capillary density in old age. With the use of hearts of sedentary young rats (4 mo old), sedentary aged rats (23 mo old), and exercise-trained aged rats (23 mo old, swim training for 8 wk), the present study investigated whether VEGF and VEGF-related angiogenic molecular expression in the aged heart is affected by exercise training. Total capillary density in the heart was significantly lower in the sedentary aged rats compared with the sedentary young rats, whereas that in the exercise-trained rat was significantly higher than the sedentary aged rats. The mRNA and protein expressions of VEGF and of fms-like tyrosine kinase-1 (Flt-1) and fetal liver kinase-1 (Flk-1), which are main VEGF receptors, in the heart were significantly lower in the sedentary aged rats compared with the sedentary young rats, whereas those in the exercise-trained rats were significantly higher than those in the sedentary aged rats. The phosphorylation of Akt protein and eNOS protein in the heart corresponded to the changes in the VEGF protein levels. These findings suggest that exercise training improves aging-induced downregulation of cardiac VEGF angiogenic signaling cascade, thereby contributing to the exercise training-induced improvement of angiogenesis in old age.  相似文献   

9.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.  相似文献   

10.
Both collateral vessel enlargement (arteriogenesis) and capillary growth (angiogenesis) in skeletal muscle occur in response to exercise training. Vascular endothelial growth factor (VEGF) is implicated in both processes. Thus we examined the effect of a VEGF receptor (VEGF-R) inhibitor (ZD4190, AstraZeneca) on collateral-dependent blood flow in vivo and collateral artery size ex vivo (indicators of arteriogenesis) and capillary contacts per fiber (CCF; an index of angiogenesis) in skeletal muscle of both sedentary and exercise-trained rats 14 days after bilateral occlusion of the femoral arteries. Total daily treadmill run time increased appreciably from approximately 70 to approximately 100 min (at 15-20 m/min, twice per day) and produced a large (approximately 75%, P < 0.01) increase in calf muscle blood flow and a greater size of the collateral artery (wall cross-sectional area). ZD4190, which previously has been shown to inhibit the activity of VEGF-R2 and -R1 tyrosine kinase in vitro (IC50 = 30 and 700 nM, respectively), completely blocked the increase in collateral-dependent blood flow and inhibited collateral vessel enlargement. Thus exercise-stimulated collateral arteriogenesis appears to be completely dependent on VEGF-R signaling. Interestingly, enhanced mRNA expression of the VEGF family ligand placental growth factor (2- to 3.5-fold), VEGF-R1 (approximately 2-fold), and endothelial nitric oxide synthase (2- to 3.5-fold) in an isolated collateral artery implicates these factors as important in arteriogenesis. Training of ischemic muscle also induced angiogenesis, as shown by an increase (approximately 25%, P < 0.01) in CCF in white gastrocnemius muscle. VEGF-R inhibition only partially blocked (P < 0.01) but did not eliminate the increase (P < 0.01) in capillarity. Our findings indicate that VEGF-R tyrosine kinase activity is essential for collateral arteriogenesis and important for the angiogenesis induced in ischemic muscle by exercise training; however, other angiogenic stimuli are also important for angiogenesis in flow-limited active muscle.  相似文献   

11.
Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.  相似文献   

12.
What makes vessels grow with exercise training?   总被引:11,自引:0,他引:11  
Exercise and muscle contractions create a powerful stimulus for structural remodeling of the vasculature. An increase in flow velocity through a vessel increases shear stress, a major stimulus for enlargement of conduit vessels. This leads to an endothelial-dependent, nitric oxide-dependent enlargement of the vessel. Increased flow within muscle, in the absence of contractions, leads to an enhanced capillarity by intussusceptive angiogenesis, a process of capillary splitting by intraluminal longitudinal divide. In contrast, sprouting angiogenesis requires extensive endothelial cell proliferation, with degradation of the extracellular matrix to permit migration and tube formation. This occurs during muscle adaptations to chronic contractions and/or muscle overload. The angiogenic growth factor VEGF appears to be an important element in angiogenesis. Recent advances in research have identified hemodynamic and mechanical stimuli that upregulate angiogenic processes, demonstrated a complexity of potent growth factors and interactions with their corresponding receptors, detected an interaction of cellular signaling events, and identified important tissue reorganization processes that must be coordinated to effect vascular remodeling. It is likely that much of this information is applicable to the vascular remodeling that occurs in response to exercise and/or muscle contractions.  相似文献   

13.
Exercise-induced injury to skeletal muscle   总被引:1,自引:0,他引:1  
Strenuous or unaccustomed exercise can cause injury to skeletal muscle. This paper reviews our understanding of the mechanisms of exercise-induced injury. Measurements of exercise-induced injury have included muscle soreness, increased serum levels of intracellular enzymes, increased lysosomal enzyme activities, structural changes in muscle fibers, and prolonged decreases in force development that cannot be attributed to fatigue. Injury can be induced by exercise of small muscle groups, which suggests that it involves processes localized in skeletal muscles. Exercise of relatively short duration can result in injury, which indicates that long durations of exercise and associated metabolic changes are not necessary for injury to occur. Exercise that involves lengthening contractions results in greater evidence of muscle injury than exercise involving isometric or shortening contractions. Lengthening contractions are associated with higher levels of force and lower metabolic costs per muscle fiber than isometric or shortening contractions. These results suggest that changes in muscle metabolism are not responsible for exercise-induced injury to skeletal muscle. Exercise-induced injury is more likely the result of mechanical disruption of muscle fibers.  相似文献   

14.
Skeletal muscle undergoes active remodeling in response to endurance exercise training, and the underlying mechanisms of this remodeling remain to be defined fully. We have recently obtained evidence that voluntary running induces cell cycle gene expression and cell proliferation in mouse plantaris muscles that undergo fast-to-slow fiber-type switching and angiogenesis after long-term exercise. To ascertain the functional role of cell proliferation in skeletal muscle adaptation, we performed in vivo 5-bromo-2'-deoxyuridine (BrdU) pulse labeling (a single intraperitoneal injection), which demonstrated a phasic increase (5- to 10-fold) in BrdU-positive cells in plantaris muscle between days 3 and 14 during 4 wk of voluntary running. Daily intraperitoneal injection of BrdU for 4 wk labeled 2.0% and 15.4% of the nuclei in plantaris muscle in sedentary and trained mice, respectively, and revealed the myogenic and angiogenic fates of the majority of proliferative cells. Ablation of resident stem cell activity by X-ray irradiation did not prevent voluntary running-induced increases of type IIa myofibers and CD31-positive endothelial cells but completely blocked the increase in muscle mass. These findings suggest that resident stem cell proliferation is not required for exercise-induced type IIb-to-IIa fiber-type switching and angiogenesis but is required for activity-dependent muscle growth. The origin of the angiogenic cells in this physiological exercise model remains to be determined. endurance exercise; adaptation  相似文献   

15.
16.
Study of physiological angiogenesis and associated signalling mechanisms in adult heart has been limited by the lack of a robust animal model. We investigated thyroid hormone‐induced sprouting angiogenesis and the underlying mechanism. Hypothyroidism was induced in C57BL/6J mice by feeding with propylthiouracil (PTU). One year of PTU treatment induced heart failure. Both 12 weeks‐ (young) and 1 year‐PTU (middle age) treatment caused a remarkable capillary rarefaction observed in capillary density. Three‐day Triiodothyronine (T3) treatment significantly induced cardiac capillary growth in hypothyroid mice. In cultured left ventricle (LV) tissues from PTU‐treated mice, T3 also induced robust sprouting angiogenesis where pericyte‐wrapped endothelial cells formed tubes. The in vitro T3 angiogenic response was similar in mice pre‐treated with PTU for periods ranging from 1.5 to 12 months. Besides bFGF and VEGF164, PDGF‐BB was the most robust angiogenic growth factor, which stimulated notable sprouting angiogenesis in cultured hypothyroid LV tissues with increasing potency, but had little effect on tissues from euthyroid mice. T3 treatment significantly increased PDGF receptor beta (PDGFR‐β) protein levels in hypothyroid heart. PDGFR inhibitors blocked the action of T3 both on sprouting angiogenesis in cultured LV tissue and on capillary growth in vivo. In addition, activation of Akt signalling mediated in T3‐induced angiogenesis was blocked by PDGFR inhibitor and neutralizing antibody. Our results suggest that hypothyroidism leads to cardiac microvascular impairment and rarefaction with increased sensitivity to angiogenic growth factors. T3‐induced cardiac sprouting angiogenesis in adult hypothyroid mice was associated with PDGF‐BB, PDGFR‐β and downstream activation of Akt.  相似文献   

17.
Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 +/- 0.04) and after (1.2 +/- 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 +/- 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 +/- 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.  相似文献   

18.
Knowledge about biological factors involved in exercise-induced angiogenesis is to date still scanty. The present study aimed to investigate the angiogenic stimulus of resistance exercise with and without superimposed whole-body vibrations. Responses to the exercise regimen before and after a 6-week training intervention were investigated in twenty-six healthy male subjects. Serum was collected at the initial and final exercise sessions and circulating levels of matrix metalloproteinases (MMP) -2 and -9, Vascular Endothelial Growth Factor (VEGF) and endostatin were determined via ELISA. Furthermore, we studied the proliferative effect of serum-treated human umbilical vein endothelial cells in vitro via BrdU-incorporation assay. It was found that circulating MMP-2, MMP-9, VEGF and endostatin levels were significantly elevated (P<0.001) from resting levels after both exercise interventions, with higher post-exercise VEGF concentrations in the resistance exercise (RE) group compared to the resistive vibration exercise (RVE) group. Moreover, RE provoked increased endothelial cell proliferation in vitro and higher post-exercise circulating endostatin concentrations after 6 weeks of training. These effects were elusive in the RVE group. The present findings suggest that resistance exercise leads to a transient rise in circulating angiogenic factors and superimposing vibrations to this exercise type might not further trigger a potential signaling of angiogenic stimulation in skeletal muscle.  相似文献   

19.
Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is an integral part of physiological processes such as embryonic development, the female reproductive cycle and wound healing. Angiogenesis is also central to a variety of pathologies including cancer, where it is recognised as being crucial for the growth of solid tumours. Matrix metalloproteinases (MMPs) are a family of soluble and membrane-anchored proteolytic enzymes that can degrade components of the extracellular matrix (ECM) as well as a growing number of modulators of cell function. Several of the MMPs, most notably MMP-2 and -9 and membrane-type-1 MMP (MT1-MMP), have been linked to angiogenesis. Potential roles for these proteases during the angiogenic process include degradation of the basement membrane and perivascular ECM components, liberation of angiogenic factors, production of endogenous angiogenic inhibitors, and the unmasking of cryptic biologically relevant sites in ECM components. This review brings together what is currently known about the functions of the MMPs and the closely related adamalysin metalloproteinase (ADAM) family in angiogenesis, and discusses how this information might be useful in manipulation of the angiogenic process, with a view to controlling aberrant neovascularisation.  相似文献   

20.
Alterations in both cell-cell and cell-matrix interactions are associated with the activation of endothelial cells that initiate angiogenesis. Cell-matrix interactions are affected by changes in both cell surface receptors for matrix proteins and the composition of ECM. One of the molecular mechanisms involved in changes in these components is the action of neutral proteinases, particularly matrix metalloproteinases. To understand the involvement of MMPs in angiogenic processes, the in vitro model of human umbilical vein endothelial cells in culture was used. Zymography and ELISA showed that, as cell-cell contact and network-like structures were formed, there was down regulation of MMP-2 and MMP-9 associated with high levels of their endogenous inhibitors TIMP-1 and TIMP-2. On treatment with aspirin, which inhibited the cell-cell contact and network-like structure formation, there was no down regulation of MMPs and cells continued to produce MMP-2 and MMP-9. These results indicate a temporal relationship between MMP-2 and MMP-9 production by endothelial cells and the onset of angiogenic event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号