首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism whereby tumor necrosis factor (TNF) kills mammalian cells is not well understood, although oxidative damage has been suggested by several investigators. Further, it is not known why cells vary in their responsiveness to TNF. We show that the cytotoxic effect of TNF toward TNF-sensitive L929 cells is blocked under hypoxic conditions, suggesting a critical role of molecular oxygen and reactive oxygen species. To test whether cellular resistance to reactive oxygen species could provide resistance to TNF, we derived a variant strain from L929 cells by chronic exposure to an oxidizing agent, hydrogen peroxide (H2O2). These cells exhibit marked resistance to TNF as well as to H2O2. This cross-protection provides additional evidence that mechanisms of resistance to oxidative damage are causally related to TNF-induced cell death. Scatchard analysis of TNF binding did not reveal significant differences between the H2O2-resistant line and the wild-type L929 line. On the other hand, analyses of antioxidant enzymes and glutathione levels in cells of the wild-type and the H2O2-resistant lines revealed several potentially important differences. Before exposure to TNF, the H2O2-resistant variants have elevated catalase activity, decreased activity of total glutathione-S-transferase (GST), and similar superoxide dismutase (SOD) activities. Exposure to TNF led to alteration in CuZnSOD activity, and much more so in the variants than in the wild-type L929 cells. However, no significant change in MnSOD activities in cells of either cell line was observed. Total GST activity was not altered appreciably by TNF in either cell line, but Western analysis showed that the level of alpha GST isozyme was increased and mu GST isozyme decreased in the H2O2-resistant variants. Furthermore, alterations in total glutathione content were observed in both the control and the variant cells.  相似文献   

2.
The influence of several metabolic inhibitors and pharmacologic agents on macrophage deformation (induced by fluid shear stress) was examined in relationship to changes in ATP content and phagocytosis of latex beads. Two relatively specific inhibitors of glycolysis (iodoacetate [IA], and sodium fluoride [NaF]) and a sulfhydryl-binding agent (N-ethylmaleimide [NEM] markedly inhibited phagocytosis and reduced cell deformability. A microtubule-disrupting agent (vinblastine) and a highly specific inhibitor of glycolysis (2-deoxyglucose) markedly inhibited phagocytosis without influencing cell deformability. An organomercurial sulfhydryl binding agent p-chloromercuribenzene (PCMBS) and a microfilament-disrupting agent (cytochalasin B) inhibited phagocytosis and increased cell deformability. The effects of these agents on phagocytosis and cell deformability bore no consistent relationship to alterations in cellular content of ATP. The observation that 2-deoxyglucose, the most specific inhibitor of glycolysis examined, reduced ATP content to levels far lower (15 percent of control values) than those achieved by any other agent examined and inhibited phagocytosis without altering cell deformability, suggests that alterations in cell deformability induced by NaF, IA, NEM, PCMBS, and cytochalasin B are not due to inhibition of glycolysis per se, but instead result from direct or indirect effects of these agents on cell constituents, possibly contractile proteins, which are determinants of cell deformability. The finding that cytochalasin B, NEM, PCMBS, and IA interfere with phagocytosis and alter cell deformability, together with evidence that these agents interact with isolated actin and myosin, suggests that contractile proteins are important both in phagocytosis and as determinants of cell deformability. The observation that vinblastine, colchicines, and heavy water (D(2)O) did not alter cell deformability, even though vinblastine caused formation of intracellular crystals of microtubular protein, indicates that microtubules are not major determinants of cell deformability. The observations that beads adhered normally to surfaces of cytochalasin B- and of PCMBS-treated cells and that shear-stress induced deformation was increased whereas phagocytosis was markedly inhibited, suggest that deformation of cells around beads associated with ingestion depends on some form of cellular (contractile?) activity, whereas deformation of cells by fluid shear stress is a passive phenomenon.  相似文献   

3.
Work from the laboratory of Dr. Arthur B. Pardee has highlighted basic principles that govern cellular and molecular biological processes in living cells. Among the most important governing principles in cellular and molecular responses are: (i) threshold "restriction" responses, wherein a level of response is reached and a "point of no return" is achieved; (ii) feedback regulation; and (iii) redundancy. Lessons learned from the molecular biology of cellular stress responses in mammalian cancer versus normal cells after ionizing radiation (IR) or chemotherapeutic agent exposures reveal similar instances of these guiding principles in mammalian cells. Among these are the: (i) induction of cell death responses by beta-lapachone (beta-lap), a naphthoquinone anti-tumor agent that kills cancer cells via an NQO1 (i.e., X-ray-inducible protein-3, xip3)-dependent mechanism; (ii) induction of secretory clusterin (sCLU) in response to TGF-beta1 exposure, and the ability of induced sCLU protein to down-regulate TGF-beta1 signaling; and (iii) induction of DNA mismatch repair-dependent G(2) cell cycle checkpoint responses after exposure to alkylating agents. We have learned these lessons and now adopted strategies to exploit them for improved therapy. These examples will be discussed and compared to the pioneering findings of researchers in the Pardee laboratory over the years.  相似文献   

4.
We investigated the effect of the gas environment on the enzymatic reactions of intact isolated cells of the agents of trachoma and of meningopneumonitis of the host-dependent genus Chlamydia. In comparison with the reactions taking place in a gas phase of air, O(2) depressed CO(2) production from pyruvate and glutamate by trachoma and from glutamate by meningopneumonitis. O(2) enhanced the degradation of pyruvate by meningopneumonitis, but this effect was due to increased H(2)O(2), and was reversed by added catalase. Both dehydrogenation of alpha-ketoglutarate and was reversed by added catalase. Dehydrogenation of alpha-ketoglutarate by both agents and production of CO(2) from C(1) of glucose-6-phosphate were stimulated by O(2) and depressed in N(2). The latter activity was stimulated in air, O(2), and N(2) by nicotinamide adenine dinucleotide phosphate (NADP) in relation to the amount added, and also in air or O(2), but not in N(2), by moderate amounts of NADP and an excess of oxidized glutathione with concomitant formation of H(2)O(2). A small but significant amount of O(2) was consumed during the course of these reactions. It is suggested that glutathione reductase activity can occur only when accompanied by an oxidative reaction, and that this close link between the two reactions represents a mechanism of electron transport which transfers hydrogen to molecular O(2).  相似文献   

5.
The aim of this study was to examine whether a modulated radiofrequency of the type used in cellular phone communications at a specific absorption rate (SAR) higher than International Commission on Non-ionizing Radiation Protection (ICNIRP) reference level for occupational exposure, could elicit alterations on proliferation, differentiation, and apoptosis processes in a neuroblastoma cell line. The cell line was exposed for 24, 48, and 72 h to 900 MHz radiofrequency and proliferation and differentiation were tested by WST-I assay and by a molecular analysis of specific markers, two oncogenes and a cytoskeleton protein, in exponential growth phase and in synchronized cell cultures. Apoptosis was evaluated by caspase activation analysis and by molecular detection of Poly (ADP-ribose) polimerase (PARP) cleavage. Combined exposures to radiofrequency and to the differentiative agent retinoic acid or to the apoptotic inducer camptothecin were carried out to test possible interference between electromagnetic field and chemical agents. Overall our data suggest that 900 MHz radiofrequency exposure up to 72 h does not induce significant alterations in the three principal cell activities in a neuroblastoma cell line.  相似文献   

6.
Recently, we showed that the cytotoxic and mutagenic response in human cells to the model SN2 alkylating agent methyl methanesulfonate (MMS) can be modulated by the mismatch repair (MMR) pathway. That is, human cancer cell lines defective in MMR are more resistant to the cytotoxic effects of MMS exposure and suffer more induced mutations at the HPRT locus than MMR-proficient cell lines. Since MMS produces little O6-methylguanine (O6-meG), the observed hypermutability and resistance to cytotoxicity in MMR-defective cells likely results from lesions other than O6-meG. MMS produces a high yield of N7-methylguanine (N7-meG) and N3-methyladenine (N3-meA), which can lead to the formation of promutagenic abasic sites, and these lesions may be responsible for the observed cytotoxic and/or mutagenic effects of MMS. To further investigate the mechanism of MMS mutagenesis, two MMR-defective human cancer cell lines were treated with MMS and the frequency and the types of mutations produced at the HPRT locus were determined. MMS treatment (1.5 mM) produced a 1.6- and a 2.2-fold increase in mutations above spontaneous levels in HCT116 and DLD-1 cell lines, respectively. An average 3.7-fold increase in transversion mutations was observed, which accounted for greater than one-third of all induced mutations in both cell lines. In contrast, an average 1.6-fold increase was seen among transition mutations (the class expected from O-alkylation products). Since transversion mutations are not produced by O6-meG, these findings suggest that abasic sites may be the lesion responsible for a large proportion of MMS mutagenicity in MMR-defective cells. Furthermore, these data suggest the MMS-induced damage, either abasic site-inducing base alterations (i.e., N7-meG and N3-meA) or the resulting abasic sites themselves, may be substrates for recognition and/or repair by MMR proteins.  相似文献   

7.
XK469 is an investigational anticancer agent that exhibits antiproliferative activity in tumor-bearing animal models. We examined the drug-action profile of this agent at the molecular level regarding alterations induced in gene expression and proteins in HCT-116 human colon adenocarcinoma cells. We used a unique cDNA microarray (GeneMap(TM) Cancerarray) comprising 1152 human tumor-related genes and 2-D gel electrophoresis, respectively, following a 24-hour exposure to a drug concentration that killed a two-log fraction of HCT-116 clonogenic cells. Functional gene cluster profile (FGCP) analysis of the 71 out of 1152 genes that displayed a >2-fold increase or decrease in expression (over untreated control) identified a drug-specific involvement of the MAPK signal transduction pathway. MAPK signaling together with the involvement of ubiquitin proteins from 2-D gel electrophoresis suggest a novel drug-action profile at the molecular level for the in vitro antiproliferative activity of XK469.  相似文献   

8.
It is well established that activation of neutrophils within the pulmonary circulation produces acute lung injury in which adherence of neutrophils to endothelial cells is an obligatory step in the mechanism of injury. The effects of in vivo activation of neutrophils on the in vitro responses of these cells to stimulation have not been determined, although such information may be important in understanding how different etiological factors may interact to produce infection or acute respiratory failure. By using an assay to sequentially measure superoxide anion (O2-) release from adherent neutrophils stimulated with phorbol myristate acetate (PMA), we measured the in vitro activation response of peripheral blood neutrophils isolated before and 24 h after infusion of zymosan-activated plasma (ZAP; or untreated plasma as a control), air bubbles, or PMA in awake, instrumented sheep. Each of the three inflammatory agents produced an increase in lung microvascular permeability characteristic of acute lung injury; control plasma did not. For the in vivo ZAP experiments, stimulated O2- release in vitro by using PMA was approximately 50% lower (P less than 0.05) for neutrophils isolated 24 h after the in vivo infusion (4.3 +/- 0.8 nmol/500,000 cells) than before (8.1 +/- 0.2 nmol/500,000 cells). For the air emboli or PMA in vivo experiments, there were no changes in neutrophil activation responses in vitro. Similarly, infusion of control plasma did not result in reduced neutrophil O2- release. These results show that alterations in the inflammatory potential of neutrophils may occur in vivo and that such alterations appear to be dependent on the mechanism and agent by which lung injury is produced.  相似文献   

9.
Growth factor production by Creutzfeldt-Jakob disease cell lines.   总被引:2,自引:1,他引:1  
Creutzfeldt-Jakob disease (CJD), a progressive dementia of humans, is caused by an infectious agent that is closely related to the scrapie agent of sheep. Although the molecular nature of these "unconventional" agents is still a matter of speculation and controversy, even less is known concerning the mechanism(s) of their effects on the central nervous system. To gain insight into the cellular effects of these agents, we have examined a series of cell lines derived directly from CJD-infected hamster brain or produced from nontransformed rodent lines by exposure to CJD infectious fractions in vitro. These cell lines appear transformed by a variety of criteria and secrete growth factors into the culture medium. All CJD lines produce a factor that is like alpha-transforming growth factor (alpha-TGF). Conditioned medium from these CJD lines also stimulates the synthesis of glial fibrillary acidic protein in normal astrocytic cells in vitro. This effect is mimicked by purified alpha-TGF and platelet-derived growth factors. Further study of CJD-induced growth factor production may elucidate fundamental properties of these unconventional agents.  相似文献   

10.
《Translational oncology》2021,14(11):101202
Calreticulin (CALR) exposure is required for most immunogenic cell death (ICD) in the anti-tumor immunity induced by chemotherapeutic agents. The present study aimed to explore the anti-tumor efficacy of the combined administration of oxaliplatin (OXA) and R848 (an agent for macrophage polarization) in lung cancer cells. Flow cytometry and immunostaining assays were performed to evaluate CALR exposure induced by OXA in the murine Lewis lung carcinoma (LLC) cells. The phagocytosis of macrophages was determined using flow cytometry and western blotting assays. The anti-tumor efficacy of the OXA and R848 combination was evaluated using flow cytometry and western blotting in vitro and in vivo. OXA induced CALR exposure on the surface of LLC cells after low dose and short duration of treatment (20 μM OXA for 24 h). LLC cells pretreated with OXA were more prone to be phagocytized by M1 than M2 macrophages. M2 macrophages repolarized to M1 by R848 in vitro showed enhanced phagocytic ability to OXA-treated LLC cells. Finally, combined administration of OXA and R848 exhibited a synergistic anti-tumor effect than single agent applied in vitro and in vivo. Macrophage polarization from pro-tumor M2 to anti-tumor M1 synergizes with OXA in lung cancer immunotherapy via enhanced tumor cell phagocytosis.  相似文献   

11.
Bovine pulmonary artery endothelial cells in culture were exposed for up to 7 d to a gas mixture containing 80% O2, 5% CO2, and 15% N2 (hyperoxia) and were compared by phase contrast and electron microscopy to cells exposed to a gas mixture containing 20% O2, 5% CO2, and 75% N2. Cells exposed to hyperoxia became enlarged and showed vacuolization and increased lysosomes within 24 to 48 h. These changes were progressive over the 7 d period of exposure. Between 3 and 7 d of exposure to hyperoxia the cells showed reductions in polysomes and endoplasmic reticulum. Despite the other marked cytoplasmic changes, the appearance of mitochondria of oxygen-exposed cells remained unchanged from those of air-exposed cells throughout the 7 d period. Preconfluent and confluent cells responded qualitatively similarly to hyperoxia, but morphological evidence of injury occurred more rapidly for preconfluent cells. We conclude that the initial early structural injury of the endothelial cell exposed to hyperoxia occurs in lysosomes and that the mitochondrial structure is relatively resistant to injury.  相似文献   

12.
The conventional laboratory approach to study the mechanisms of drug resistance has been the selection of drug-resistant cell lines by continuous exposure to cytotoxic agents. Such lines, which are selected for resistance to a single agent, frequently display cross-resistance to a number of cytotoxic agents that are unrelated in both structure and proposed mechanism of action. Multidrug-resistant cells display reduced drug accumulation, which is the result of overexpression of a surface glycoprotein (P170). Although resistance to multiple antitumor agents is a common clinical problem in the treatment of cancer, the precise role of the P-glycoprotein-mediated mechanism in human tumors remains to be established. Many alterations in multidrug-resistant cells selected in vitro have been identified. The concomitant expression of multiple phenotypic differences, which appear to be favored by continued and prolonged drug exposure, makes analysis of critical individual resistance pathways more difficult. However, multiple factors may also be involved in the development of clinical resistance. Recent studies have identified alterations in DNA topoisomerase II activity and function as an alternative mechanism that contributes to the multidrug-resistance phenomenon or is responsible for a different type of drug resistance. The precise nature of these changes remains unclear. Available evidence supports the view that expression of the enzyme is an important determinant of cell sensitivity to DNA topoisomerase poisons, but that other changes involved in regulation of enzyme function and/or in the cellular processing of drug-induced DNA damage may be critical in determining the differential pattern of cell response to antitumor agents.  相似文献   

13.
Methylating agents are potent carcinogens that are mutagenic and cytotoxic towards bacteria and mammalian cells. Their effects can be ascribed to an ability to modify DNA covalently. Pioneering studies of the chemical reactivity of methylating agents towards DNA components and their effectiveness as animal carcinogens identified O(6)-methylguanine (O(6)meG) as a potentially important DNA lesion. Subsequent analysis of the effects of methylating carcinogens in bacteria and cultured mammalian cells - including the discovery of the inducible adaptive response to alkylating agents in Escherichia coli - have defined the contributions of O(6)meG and other methylated DNA bases to the biological effects of these chemicals. More recently, the role of O(6)meG in killing mammalian cells has been revealed by the lethal interaction between persistent DNA O(6)meG and the mismatch repair pathway. Here, we briefly review the results which led to the identification of the biological consequences of persistent DNA O(6)meG. We consider the possible consequences for a human cell of chronic exposure to low levels of a methylating agent. Such exposure may increase the probability that the cell's mismatch repair pathway becomes inactive. Loss of mismatch repair predisposes the cell to mutation induction, not only through uncorrected replication errors but also by methylating agents and other mutagens.  相似文献   

14.
A procedure for detecting proteins that contain H(2)O(2)-sensitive cysteine (or selenocysteine) residues was developed as a means with which to study protein oxidation by H(2)O(2) in cells. The procedure is based on the facts that H(2)O(2) and biotin-conjugated iodoacetamide (BIAM) selectively and competitively react with cysteine residues that exhibit a low pK(a), and that the decrease in the labeling of cell lysate proteins with BIAM caused by prior exposure of cells to H(2)O(2) or to an agent that induces H(2)O(2) production can be monitored by streptavidin blot analysis. This procedure was applied to rat pheochromocytoma PC12 cells directly treated with H(2)O(2), mouse hippocampal HT22 cells in which H(2)O(2) production was induced by glutamate, and human erythroleukemia K562 cells in which H(2)O(2) production was induced by phorbol myristate acetate. It revealed that several cell proteins contain cysteine or selenocysteine residues that are selectively oxidized by H(2)O(2). Three of these H(2)O(2)-sensitive proteins were identified as a member of the protein disulfide isomerase family, thioredoxin reductase, and creatine kinase, all of which were previously known to contain at least one reactive cysteine or selenocysteine at their catalytic sites. This procedure should thus prove useful for the identification of proteins that are oxidized by H(2)O(2) generated in response to a variety of extracellular agents.  相似文献   

15.
Cellular apoptosis in a tissue may occur for the maintenance of proper ratio of cells or because of toxic effects of free radicals or other agents. Male germ cell apoptosis is pivotal in maintaining the proper functioning of the testis, but it is not clear how free radicals affect germ cells and what the defense mechanisms are that are used by these cells to combat the toxic effects of the products of oxidative stress. This study shows that male germ cells are susceptible to H(2)O(2)-induced stress and, upon exposure to H(2)O(2) in vitro, demonstrate a typical apoptotic phenotype that includes DNA fragmentation and formation of DNA ladders. Other changes include considerable accumulation of products of lipid peroxidation in the germ cells after exposure to H(2)O(2). Evidence is presented for the existence of multiple isoforms of glutathione S-transferases (GSTs) that possess both transferase and Se-independent peroxidase activity. Germ cell GST activity increases after H(2)O(2) exposure. If this increase in activity is inhibited with suitable inhibitors, the formation of products of lipid peroxidation is augmented, resulting in germ cell apoptosis. Also, when constitutive GST activity is inhibited, accumulation of products of lipid peroxidation occurs, resulting in increased cellular apoptosis. These data show that GSTs form a part of adaptive response of germ cells to oxidative stress and are important constituents in detoxifying the products of lipid peroxidation.  相似文献   

16.
The measurement of cytogenetic alterations in vitro is considered an initial step in the risk assessment procedures for genotoxic agents. The concern about genotoxic pollutants in natural fish population makes the use of fish-derived cells an useful tool for these purposes. The technological improvements in well-established cytogenetic endpoints, such as micronuclei (MN) estimations by means of flow cytometry, have been proposed in the later years using mammalian cells. In this work, we test the capability of flow cytometry to evaluate MN induction and cell cycle alterations in an established fish cell line (RTG-2) using three agent-inductor models at different concentrations and exposure periods. For mitomycin C, an inverse relationship between length of exposure period and concentrations was observed. A dose-response relationship was observed after exposing RTG-2 cells to vincristine sulfate and benzo(a)pyrene. As this study shows, RTG-2 cells respond to clastogenic and aneugenic effects of the tested chemicals through the induction of MN at similar doses to mammalian cells and without the addition of exogenous metabolic activity. The possibility to check cell cycle alterations, in the same sample, gives the opportunity to evaluate early signals of cytotoxicity. The use of flow cytometry improves the assay by means of its speed and objectivity, which makes the assay very useful for genotoxicity assessment of aquatic chemicals.  相似文献   

17.
Ozone (O(3)), a major component of air pollution and a strong oxidizing agent, can lead to lung injury associated with edema, inflammation, and epithelial cell damage. The effects of O(3) on pulmonary immune cells have been studied in various in vivo and in vitro systems. We have shown previously that O(3) exposure of surfactant protein (SP)-A decreases its ability to modulate proinflammatory cytokine production by cells of monocyte/macrophage lineage (THP-1 cells). In this report, we exposed THP-1 cells and/or native SP-A obtained from bronchoalveolar lavage of patients with alveolar proteinosis to O(3) and studied cytokine production and NF-kappaB signaling. The results showed 1) exposure of THP-1 cells to O(3) significantly decreased their ability to express TNF-alpha in response to SP-A; TNF-alpha production, under these conditions, was still significantly higher than basal (unstimulated) levels in filtered air-exposed THP-1 cells; 2) exposure of both THP-1 cells and SP-A to O(3) did not result in any significant differences in TNF-alpha expression compared with basal levels; 3) O(3) exposure of SP-A resulted in a decreased ability of SP-A to activate the NF-kappaB pathway, as assessed by the lack of significant increase and decrease of the nuclear p65 subunit of NF-kappaB and cytoplasmic IkappaBalpha, respectively; and 4) O(3) exposure of THP-1 cells resulted in a decrease in SP-A-mediated THP-1 cell responsiveness, which did not seem to be mediated via the classic NF-kappaB pathway. These findings indicate that O(3) exposure may mediate its effect on macrophage function both directly and indirectly (via SP-A oxidation) and by involving different mechanisms.  相似文献   

18.
目的:研究三氧化二砷(As2O3)对人口腔鳞癌A431细胞生长的抑制作用,探讨其抗肿瘤的机制。方法:合成特异性靶向到肿 瘤细胞表面表皮生长因子受体(EGFR)的近红外荧光分子对比剂EGF-Cy5.5,验证试剂合成的靶向特异性。口腔鳞状细胞癌 A431 细胞系暴露于浓度分别为0 滋M,0.5 滋M,2.5 滋M和5.0 滋M的三氧化二砷溶液中0,24 h,48 h和72 h。共聚焦显微镜、流式 细胞仪及免疫组化证实EGFR的表达水平,上述实验均测量三次,结果取平均值。结果:EGF-Cy5.5 靶向荧光对比剂的标记率为 68%~70 %。对比对照组,越高浓度的三氧化二砷处理的肿瘤细胞其获得的细胞荧光信号强度越小,这与药物浓度越高细胞表面表 达EGFR 的量越少相一致。流式细胞仪显示,在72 小时,作用于细胞的三氧化二砷药物浓度分别为0.5 滋M,2.5 滋M,和5.0 滋M, 其相对应获得的细胞EGFR 表达量分别为57.28± 3.2 %(P<0.05), 29.91± 2.2 %(P<0.01) 和10.73± 2.4 %(P<0.01),明显低于对照 组的细胞EGFR 表达量74.42± 1.8 %,(P <0.05)。结论:本研究应用近红外荧光分子成像的方法体外检测口腔鳞状细胞癌A431 的 EGFR表达水平,实验证明三氧化二砷对其EGFR 具有明显的抑制作用,且抑制作用具有时间- 剂量依赖性。  相似文献   

19.
We have examined the restriction digest patterns of CCGG sequences in Kiras, Ha-ras, and c-myc oncogenes in rat tracheal epithelial cells transformed in vitro by 7,12-dimethylbenz(a)anthracene, benzo(a)pyrene/12-O-tetradecanoylphorbol-13-acetate (TPA), or TPA alone. Oncogenes c-myc and Ha-ras in transformed cell lines, compared to normal rat tracheal epithelial cells and untreated primary cultures, had altered Hpa II restriction patterns as demonstrated by hybridizing bands of different molecular weight, or loss of bands. Ki-ras was hypermethylated in all cell derivations, including normal cells. These molecular alterations have not previously been reported for epithelial cells transformed in vitro by polycyclic hydrocarbons and tumor promoters, and suggest common mechanisms of action for agents with diverse molecular targets.  相似文献   

20.
The primary cultures of 3-day old rats heart myocytes were used for studying hypoxia. The cells were gassed for 1 or 2 hours with 100% N2 or with the mixture of 90% N2, 5% CO2, 5% O2. The cells' morphology was tested by the light microscopy. The contractility of the cells was lost after oxygen deprivation. But it was reversible when the cells were exposed to 5% O2 for an hour and then were returned to the normal conditions. Oxygen deprivation changed the cell's morphology so that vacuolization, bubbling, contracture, exfoliation of the cell membrane from the glass surface could be observed. The number of the cells with morphological alterations increased when the content of oxygen in the gas mixture was lowered and the time of gassing was prolonged. The authors assume that the primary culture of the myocardial cells is a suitable model for studying the metabolic patterns of reversible injuries caused by one hour hypoxia (5% O2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号