首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mutations in the LMNA gene, which encodes all A-type lamins, including lamin A and lamin C, cause a variety of tissue-specific degenerative diseases termed laminopathies. Little is known about the pathogenesis of these disorders. Previous studies have indicated that A-type lamins interact with the retinoblastoma protein (pRB). Here we probe the functional consequences of this association and further examine links between nuclear structure and cell cycle control. Since pRB is required for cell cycle arrest by p16(ink4a), we tested the responsiveness of multiple lamin A/C-depleted cell lines to overexpression of this CDK inhibitor and tumor suppressor. We find that the loss of A-type lamin expression results in marked destabilization of pRB. This reduction in pRB renders cells resistant to p16(ink4a)-mediated G(1) arrest. Reintroduction of lamin A, lamin C, or pRB restores p16(ink4a)-responsiveness to Lmna(-/-) cells. An array of lamin A mutants, representing a variety of pathologies as well as lamin A processing mutants, was introduced into Lmna(-/-) cells. Of these, a mutant associated with mandibuloacral dysplasia (MAD R527H), as well as two lamin A processing mutants, but not other disease-associated mutants, failed to restore p16(ink4a) responsiveness. Although our findings do not rule out links between altered pRB function and laminopathies, they fail to support such an assertion. These findings do link lamin A/C to the functional activation of a critical tumor suppressor pathway and further the possibility that somatic mutations in LMNA contribute to tumor progression.  相似文献   

2.
Laminopathies are a collection of phenotypically diverse diseases that include muscular dystrophies, cardiomyopathies, lipodystrophies, and premature aging syndromes. Laminopathies are caused by >300 distinct mutations in the LMNA gene, which encodes the nuclear intermediate filament proteins lamin A and C, two major architectural elements of the mammalian cell nucleus. The genotype–phenotype relationship and the basis for the pronounced tissue specificity of laminopathies are poorly understood. Here we seek to identify on a global scale lamin A–binding partners whose interaction is affected by disease-relevant LMNA mutations. In a screen of a human genome–wide ORFeome library, we identified and validated 337 lamin A–binding proteins. Testing them against 89 known lamin A disease mutations identified 50 disease-associated interactors. Association of progerin, the lamin A isoform responsible for the premature aging disorder Hutchinson–Gilford progeria syndrome, with its partners was largely mediated by farnesylation. Mapping of the interaction sites on lamin A identified the immunoglobulin G (IgG)–like domain as an interaction hotspot and demonstrated that lamin A variants, which destabilize the Ig-like domain, affect protein–protein interactions more globally than mutations of surface residues. Analysis of a set of LMNA mutations in a single residue, which result in three phenotypically distinct diseases, identified disease-specific interactors. The results represent a systematic map of disease-relevant lamin A interactors and suggest loss of tissue-specific lamin A interactions as a mechanism for the tissue-specific appearance of laminopathic phenotypes.  相似文献   

3.
Mutations in the lamin A/C gene (LMNA) lead to severe disorders collectively called laminopathies. The mechanisms by which lamin mutations cause the diseases are not clear. Since the mesenchymal lineages, adipose tissue in particular, are mostly affected in laminopathies, the aim of the study was to estimate the effect of LMNA mutations on differentiation of mesenchymal stem cells, adipose tissue stromal cells (ATSCs), into adipose lineages. ATSCs transduced with lentiviral vectors carrying LMNA gene mutations associated with various syndromes (myodystrophy, cardiomyopathy, lipodystrophy, progeroid syndrome) were induced to adipose differentiate. It was found that introduction of genetic constructions with LMNA gene point mutations G465D, R482L, and R527C promote adipogenic differentiation compared to wild-type lamin gene; mutation R471C reduced the differentiation. Introduction of R471C or R527C lamin mutations profoundly increased the expression of adipogenesis markers PPARG, SREBP1, and adipsin. Mutations in A/C lamin gene strongly and variously affect the differentiation of mesenchymal stem cells that probably underlie the pathogenic changes in patients with laminopathies.  相似文献   

4.
5.
Lamins, members of the family of intermediate filaments, form a supportive nucleoskeletal structure underlying the nuclear envelope and can also form intranuclear structures. Mutations within the A-type lamin gene cause a variety of degenerative diseases which are collectively referred to as laminopathies. At the molecular level, laminopathies have been shown to be linked to a discontinuous localization pattern of A-type lamins, with some laminopathies containing nuclear lamin A aggregates. Since nuclear aggregate formation could lead to the mislocalization of proteins interacting with A-type lamins, we set out to examine the effects of FLAG-lamin A N195K and R386K protein aggregate formation on the subnuclear distribution of the retinoblastoma protein (pRb) and the sterol responsive element binding protein 1a (SREBP1a) after coexpression as GFP-fusion proteins in HeLa cells. We observed strong recruitment of both proteins into nuclear aggregates. Nuclear aggregate recruitment of the NPC component nucleoporin NUP153 was also observed and found to be dependent on the N-terminus. That these effects were specific was implied by the fact that a number of other coexpressed karyophilic GFP-fusion proteins, such as the nucleoporin NUP98 and kanadaptin, did not coaggregate with FLAG-lamin A N195K or R386K. Immunofluorescence analysis further indicated that the precursor form of lamin A, pre-lamin A, could be found in intranuclear aggregates. Our results imply that redistribution into lamin A-/pre-lamin A-containing aggregates of proteins such as pRb and SREBP1a could represent a key aspect underlying the molecular pathogenesis of certain laminopathies.  相似文献   

6.
A number of diseases associated with specific tissue degeneration and premature aging have mutations in the nuclear envelope proteins A-type lamins or emerin. Those diseases with A-type lamin mutation are inclusively termed laminopathies. Due to various hypothetical roles of nuclear envelope proteins in genome function we investigated whether alterations to normal genomic behaviour are apparent in cells with mutations in A-type lamins and emerin. Even though the distributions of these proteins in proliferating laminopathy fibroblasts appear normal, there is abnormal nuclear positioning of both chromosome 18 and 13 territories, from the nuclear periphery to the interior. This genomic organization mimics that found in normal nonproliferating quiescent or senescent cells. This finding is supported by distributions of modified pRb in the laminopathy cells. All laminopathy cell lines tested and an X-linked Emery-Dreifuss muscular dystrophy cell line also demonstrate increased incidences of apoptosis. The most extreme cases of apoptosis occur in cells derived from diseases with mutations in the tail region of the LMNA gene, such as Dunningan-type familial partial lipodystrophy and mandibuloacral dysplasia, and this correlates with a significant level of micronucleation in these cells.  相似文献   

7.
Mutations in the A-type lamin (LMNA) gene are associated with age-associated degenerative disorders of mesenchymal tissues, such as dilated cardiomyopathy, Emery-Dreifuss muscular dystrophy, and limb-girdle muscular dystrophy. The molecular mechanisms that connect mutations in LMNA with different human diseases are poorly understood. Here, we report the identification of a Muscle-enriched A-type Lamin-interacting Protein, MLIP (C6orf142 and 2310046A06rik), a unique single copy gene that is an innovation of amniotes (reptiles, birds, and mammals). MLIP encodes alternatively spliced variants (23-57 kDa) and possesses several novel structural motifs not found in other proteins. MLIP is expressed ubiquitously and most abundantly in heart, skeletal, and smooth muscle. MLIP interacts directly and co-localizes with lamin A and C in the nuclear envelope. MLIP also co-localizes with promyelocytic leukemia (PML) bodies within the nucleus. PML, like MLIP, is only found in amniotes, suggesting that a functional link between the nuclear envelope and PML bodies may exist through MLIP. Down-regulation of lamin A/C expression by shRNA results in the up-regulation and mislocalization of MLIP. Given that MLIP is expressed most highly in striated and smooth muscle, it is likely to contribute to the mesenchymal phenotypes of laminopathies.  相似文献   

8.
A-type lamins are localized at the nuclear envelope and in the nucleoplasm, and are implicated in human diseases called laminopathies. In a yeast two-hybrid screen with lamin C, we identified a novel widely expressed 171-kDa protein that we named Lamin companion 1 (Lco1). Three independent biochemical assays showed direct binding of Lco1 to the C-terminal tail of A-type lamins with an affinity of 700 nM. Lco1 also bound the lamin B1 tail with lower affinity (2 microM). Ectopic Lco1 was found primarily in the nucleoplasm and colocalized with endogenous intranuclear A-type lamins in HeLa cells. Overexpression of prelamin A caused redistribution of ectopic Lco1 to the nuclear rim together with ectopic lamin A, confirming association of Lco1 with lamin A in vivo. Whereas the major C-terminal lamin-binding fragment of Lco1 was cytoplasmic, the N-terminal Lco1 fragment localized in the nucleoplasm upon expression in cells. Furthermore, full-length Lco1 was nuclear in cells lacking A-type lamins, showing that A-type lamins are not required for nuclear targeting of Lco1. We conclude that Lco1 is a novel intranuclear lamin-binding protein. We hypothesize that Lco1 is involved in organizing the internal lamin network and potentially relevant as a laminopathy disease gene or modifier.  相似文献   

9.
10.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

11.
"Laminopathies": a wide spectrum of human diseases   总被引:9,自引:0,他引:9  
Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called "laminopathies." Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasia and Pelger-Huet anomaly. While mutations and clinical phenotypes of "laminopathies" have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new "laminopathies" and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies.  相似文献   

12.
Nuclear envelope-related muscular dystrophies, in particular those referred to as laminopathies, are relatively novel and unclear diseases, also considering the increasing number of mutations identified so far in genes of the nuclear envelope. As regard LMNA gene, only tentative relations between phenotype, type and localization of the mutations have been established in striated muscle diseases, while laminopathies affecting adipose tissue, peripheral nerves or progerioid syndromes could be linked to specific genetic variants. This study describes the biochemical phenotype of neuromuscular laminopathies in samples derived from LMNA mutant patients. Since it has been reported that nuclear alterations, due to LMNA defects, are present also in fibroblasts from Emery-Dreifuss muscular dystrophy and familial partial lipodystrophy patients, we analyzed 2D-maps of skin fibroblasts of patients carrying 12 different LMNA mutations spread along the entire gene. To recognize distinctive proteins underlying affected biochemical pathways, we compared them with fibroblasts from healthy controls and, more importantly, fibroblasts from patients with non-lamin related neuromuscular disorders. We found less abundance of cytoskeletal/structural proteins, confirming a dominant role for Lamin A/C in structural support of nuclear architecture. Interestingly, we also established significant changes in the expression of proteins involved in cellular energy production and oxidative stress response. To our knowledge, this is the first report where proteomics was applied to characterize ex-vivo cells from LMNA patients, suggesting that this may represent a new approach to better understand the molecular mechanisms of these rare diseases and facilitate the development of novel therapeutic treatments.  相似文献   

13.
Lipodystrophic syndromes associated with mutations in LMNA, encoding A-type lamins, and with HIV antiretroviral treatments share several clinical characteristics. Nuclear alterations and prelamin A accumulation have been reported in fibroblasts from patients with LMNA mutations and adipocytes exposed to protease inhibitors (PI). As genetically altered lamin A maturation also results in premature ageing syndromes with lipodystrophy, we studied prelamin A expression and senescence markers in cultured human fibroblasts bearing six different LMNA mutations or treated with PIs. As compared to control cells, fibroblasts with LMNA mutations or treated with PIs had nuclear shape abnormalities and reduced proliferative activity that worsened with increasing cellular passages. They exhibited prelamin A accumulation, increased oxidative stress, decreased expression of mitochondrial respiratory chain proteins and premature cellular senescence. Inhibition of prelamin A farnesylation prevented cellular senescence and oxidative stress. Adipose tissue samples from patients with LMNA mutations or treated with PIs also showed retention of prelamin A, overexpression of the cell cycle checkpoint inhibitor p16 and altered mitochondrial markers. Thus, both LMNA mutations and PI treatment result in accumulation of farnesylated prelamin A and oxidative stress that trigger premature cellular senescence. These alterations could participate in the pathophysiology of lipodystrophic syndromes and lead to premature ageing complications.  相似文献   

14.
15.
Mouse models of the laminopathies   总被引:3,自引:0,他引:3  
The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.  相似文献   

16.
Insulin resistance is a common metabolic disorder. It plays an important role in the metabolic syndrome (or syndrome X), type 2 diabetes, obesity and in the lipodystrophic syndromes recently described, associated with treatments of HIV disease and represent a worrying cardiovascular risk. However, its pathophysiology remains poorly understood in these situations. Syndromes of major insulin resistance, although rare, allow investigations of the mechanisms leading to alterations in the insulin transduction pathways. Mutations of the insulin receptor gene have been discovered in rare patients. Therefore alterations at the post-receptor level are probably causative in other cases. Furthermore, the role of body fat repartition seems determinant in the apparition of insulin resistance, as attested by the clinical characteristics of lipodystrophies, either congenital or acquired. The two lipodystrophic syndromes which molecular defect is identified are the familial partial lipodystrophy of the Dunnigan type, due to mutations of the lamin A/C gene, and the congenital generalized lipodystrophy, linked to alterations in the protein seipin. However, their physiopathology remains mysterious. Lamin A/C is indeed an ubiquitous nuclear protein, which is also mutated in a genetic squelettic and/or cardiac myopathy, and seipin is a protein of unknown function mainly expressed in brain. Progresses in the understanding of these syndromes, in particular lipodystrophies which can be considered as caricatural models of the metabolic syndrome, will probably allow to clarify the physiopathology of the more common forms of insulin resistance.  相似文献   

17.
Lamin A is a component of the nuclear envelope that is synthesized as a precursor prelamin A molecule and then processed into mature lamin A through sequential steps of posttranslational modifications and proteolytic cleavages. Remarkably, over 400 distinct point mutations have been so far identified throughout the LMNA gene, which result in the development of at least ten distinct human disorders, collectively known as laminopathies, among which is the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). The majority of HGPS cases are associated with a single point mutation in the LMNA gene that causes the production of a permanently farnesylated mutant lamin A protein termed progerin. The mechanism by which progerin leads to premature aging and the classical HGPS disease phenotype as well as the relationship between this disorder and the onset of analogous symptoms during the lifespan of a normal individual are not well understood. Yet, recent studies have provided critical insights on the cellular processes that are affected by accumulation of progerin and have suggested that cellular alterations in the lamin A processing pathway leading to the accumulation of farnesylated prelamin A intermediates may play a role in the aging process in the general population. In this review we provide a short background on lamin A and its maturation pathway and discuss the current knowledge of how progerin or alterations in the prelamin A processing pathway are thought to influence cell function and contribute to human aging.  相似文献   

18.
Lamins belong to type V intermediate filaments superfamily. They are the main structural constituencies of the nuclear lamina but they also influence on chromatin structure, regulation of gene expression, localization and probably protein degradation. Because lamins play many different roles within the cell, mutations in their genes can results in variety of pathological phenotypes. Mutations in LMNA gene are the cause of many different diseases, called laminopathies. Among laminopathies are muscle tissue diseases, adipose tissue diseases and also progerias, the premature aging syndromes. One of the progerias, which results from mutation in LMNA gene, is Hutchinson-Gilford progeria syndrome (HGPS). It seems that the same molecular mechanisms which are responsible for premature aging of cells of HGPS patients, are involved in physiological aging.  相似文献   

19.
20.
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号